js8call/.svn/pristine/72/72f899cc72cabf9d649fd44fe37ac2d35839f90e.svn-base

138 lines
4.2 KiB
Plaintext
Raw Normal View History

2018-02-08 21:28:33 -05:00
///////////////////////////////////////////////////////////////
// Copyright 2013 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
#ifndef BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
#define BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
namespace boost{ namespace multiprecision{ namespace backends{
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
void eval_exp_taylor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
static const int bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count;
//
// Taylor series for small argument, note returns exp(x) - 1:
//
res = limb_type(0);
cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> num(arg), denom, t;
denom = limb_type(1);
eval_add(res, num);
for(unsigned k = 2; ; ++k)
{
eval_multiply(denom, k);
eval_multiply(num, arg);
eval_divide(t, num, denom);
eval_add(res, t);
if(eval_is_zero(t) || (res.exponent() - bits > t.exponent()))
break;
}
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
void eval_exp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
//
// This is based on MPFR's method, let:
//
// n = floor(x / ln(2))
//
// Then:
//
// r = x - n ln(2) : 0 <= r < ln(2)
//
// We can reduce r further by dividing by 2^k, with k ~ sqrt(n),
// so if:
//
// e0 = exp(r / 2^k) - 1
//
// With e0 evaluated by taylor series for small arguments, then:
//
// exp(x) = 2^n (1 + e0)^2^k
//
// Note that to preserve precision we actually square (1 + e0) k times, calculating
// the result less one each time, i.e.
//
// (1 + e0)^2 - 1 = e0^2 + 2e0
//
// Then add the final 1 at the end, given that e0 is small, this effectively wipes
// out the error in the last step.
//
using default_ops::eval_multiply;
using default_ops::eval_subtract;
using default_ops::eval_add;
using default_ops::eval_convert_to;
int type = eval_fpclassify(arg);
bool isneg = eval_get_sign(arg) < 0;
if(type == (int)FP_NAN)
{
res = arg;
return;
}
else if(type == (int)FP_INFINITE)
{
res = arg;
if(isneg)
res = limb_type(0u);
else
res = arg;
return;
}
else if(type == (int)FP_ZERO)
{
res = limb_type(1);
return;
}
cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> t, n;
if(isneg)
{
t = arg;
t.negate();
eval_exp(res, t);
t.swap(res);
res = limb_type(1);
eval_divide(res, t);
return;
}
eval_divide(n, arg, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
eval_floor(n, n);
eval_multiply(t, n, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
eval_subtract(t, arg);
t.negate();
if(eval_get_sign(t) < 0)
{
// There are some very rare cases where arg/ln2 is an integer, and the subsequent multiply
// rounds up, in that situation t ends up negative at this point which breaks our invariants below:
t = limb_type(0);
}
BOOST_ASSERT(t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) < 0);
Exponent k, nn;
eval_convert_to(&nn, n);
k = nn ? Exponent(1) << (msb(nn) / 2) : 0;
eval_ldexp(t, t, -k);
eval_exp_taylor(res, t);
//
// Square 1 + res k times:
//
for(int s = 0; s < k; ++s)
{
t.swap(res);
eval_multiply(res, t, t);
eval_ldexp(t, t, 1);
eval_add(res, t);
}
eval_add(res, limb_type(1));
eval_ldexp(res, res, nn);
}
}}} // namespaces
#endif