194 lines
8.3 KiB
Plaintext
194 lines
8.3 KiB
Plaintext
|
// Copyright (c) 2006 Xiaogang Zhang
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_MATH_BESSEL_J0_HPP
|
||
|
#define BOOST_MATH_BESSEL_J0_HPP
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma once
|
||
|
#endif
|
||
|
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
#include <boost/math/tools/rational.hpp>
|
||
|
#include <boost/math/tools/big_constant.hpp>
|
||
|
#include <boost/assert.hpp>
|
||
|
|
||
|
// Bessel function of the first kind of order zero
|
||
|
// x <= 8, minimax rational approximations on root-bracketing intervals
|
||
|
// x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
|
||
|
|
||
|
namespace boost { namespace math { namespace detail{
|
||
|
|
||
|
template <typename T>
|
||
|
T bessel_j0(T x);
|
||
|
|
||
|
template <class T>
|
||
|
struct bessel_j0_initializer
|
||
|
{
|
||
|
struct init
|
||
|
{
|
||
|
init()
|
||
|
{
|
||
|
do_init();
|
||
|
}
|
||
|
static void do_init()
|
||
|
{
|
||
|
bessel_j0(T(1));
|
||
|
}
|
||
|
void force_instantiate()const{}
|
||
|
};
|
||
|
static const init initializer;
|
||
|
static void force_instantiate()
|
||
|
{
|
||
|
initializer.force_instantiate();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class T>
|
||
|
const typename bessel_j0_initializer<T>::init bessel_j0_initializer<T>::initializer;
|
||
|
|
||
|
template <typename T>
|
||
|
T bessel_j0(T x)
|
||
|
{
|
||
|
bessel_j0_initializer<T>::force_instantiate();
|
||
|
|
||
|
static const T P1[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01))
|
||
|
};
|
||
|
static const T Q1[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
|
||
|
};
|
||
|
static const T P2[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01))
|
||
|
};
|
||
|
static const T Q2[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
|
||
|
};
|
||
|
static const T PC[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01))
|
||
|
};
|
||
|
static const T QC[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
|
||
|
};
|
||
|
static const T PS[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03))
|
||
|
};
|
||
|
static const T QS[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
|
||
|
};
|
||
|
static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)),
|
||
|
x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)),
|
||
|
x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)),
|
||
|
x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)),
|
||
|
x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)),
|
||
|
x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04));
|
||
|
|
||
|
T value, factor, r, rc, rs;
|
||
|
|
||
|
BOOST_MATH_STD_USING
|
||
|
using namespace boost::math::tools;
|
||
|
using namespace boost::math::constants;
|
||
|
|
||
|
if (x < 0)
|
||
|
{
|
||
|
x = -x; // even function
|
||
|
}
|
||
|
if (x == 0)
|
||
|
{
|
||
|
return static_cast<T>(1);
|
||
|
}
|
||
|
if (x <= 4) // x in (0, 4]
|
||
|
{
|
||
|
T y = x * x;
|
||
|
BOOST_ASSERT(sizeof(P1) == sizeof(Q1));
|
||
|
r = evaluate_rational(P1, Q1, y);
|
||
|
factor = (x + x1) * ((x - x11/256) - x12);
|
||
|
value = factor * r;
|
||
|
}
|
||
|
else if (x <= 8.0) // x in (4, 8]
|
||
|
{
|
||
|
T y = 1 - (x * x)/64;
|
||
|
BOOST_ASSERT(sizeof(P2) == sizeof(Q2));
|
||
|
r = evaluate_rational(P2, Q2, y);
|
||
|
factor = (x + x2) * ((x - x21/256) - x22);
|
||
|
value = factor * r;
|
||
|
}
|
||
|
else // x in (8, \infty)
|
||
|
{
|
||
|
T y = 8 / x;
|
||
|
T y2 = y * y;
|
||
|
BOOST_ASSERT(sizeof(PC) == sizeof(QC));
|
||
|
BOOST_ASSERT(sizeof(PS) == sizeof(QS));
|
||
|
rc = evaluate_rational(PC, QC, y2);
|
||
|
rs = evaluate_rational(PS, QS, y2);
|
||
|
factor = constants::one_div_root_pi<T>() / sqrt(x);
|
||
|
//
|
||
|
// What follows is really just:
|
||
|
//
|
||
|
// T z = x - pi/4;
|
||
|
// value = factor * (rc * cos(z) - y * rs * sin(z));
|
||
|
//
|
||
|
// But using the addition formulae for sin and cos, plus
|
||
|
// the special values for sin/cos of pi/4.
|
||
|
//
|
||
|
T sx = sin(x);
|
||
|
T cx = cos(x);
|
||
|
value = factor * (rc * (cx + sx) - y * rs * (sx - cx));
|
||
|
}
|
||
|
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
}}} // namespaces
|
||
|
|
||
|
#endif // BOOST_MATH_BESSEL_J0_HPP
|
||
|
|