642 lines
34 KiB
Plaintext
642 lines
34 KiB
Plaintext
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// Copyright Christopher Kormanyos 2014.
|
||
|
// Copyright John Maddock 2014.
|
||
|
// Copyright Paul Bristow 2014.
|
||
|
// Distributed under the Boost Software License,
|
||
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
//
|
||
|
|
||
|
// Implement a specialization of std::complex<> for *anything* that
|
||
|
// is defined as BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE.
|
||
|
|
||
|
#ifndef _BOOST_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
|
||
|
#define _BOOST_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
|
||
|
|
||
|
#if defined(__GNUC__)
|
||
|
#pragma GCC system_header
|
||
|
#endif
|
||
|
|
||
|
#include <complex>
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
|
||
|
namespace std
|
||
|
{
|
||
|
// Forward declarations.
|
||
|
template<class float_type>
|
||
|
class complex;
|
||
|
|
||
|
template<>
|
||
|
class complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>;
|
||
|
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE real(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE imag(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE abs (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE arg (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE norm(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> conj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> proj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> polar(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&,
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& = 0);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sqrt (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sin (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cos (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tan (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asin (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acos (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atan (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> exp (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log10(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
|
||
|
int);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&,
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sinh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cosh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tanh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
template<class char_type, class traits_type>
|
||
|
inline std::basic_ostream<char_type, traits_type>& operator<<(std::basic_ostream<char_type, traits_type>&, const std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
template<class char_type, class traits_type>
|
||
|
inline std::basic_istream<char_type, traits_type>& operator>>(std::basic_istream<char_type, traits_type>&, std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
|
||
|
|
||
|
// Template specialization of the complex class.
|
||
|
template<>
|
||
|
class complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
|
||
|
{
|
||
|
public:
|
||
|
typedef BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE value_type;
|
||
|
|
||
|
explicit complex(const complex<float>&);
|
||
|
explicit complex(const complex<double>&);
|
||
|
explicit complex(const complex<long double>&);
|
||
|
|
||
|
#if defined(BOOST_NO_CXX11_CONSTEXPR)
|
||
|
complex(const value_type& r = value_type(),
|
||
|
const value_type& i = value_type()) : re(r),
|
||
|
im(i) { }
|
||
|
|
||
|
template<typename X>
|
||
|
complex(const complex<X>& x) : re(x.real()),
|
||
|
im(x.imag()) { }
|
||
|
|
||
|
const value_type& real() const { return re; }
|
||
|
const value_type& imag() const { return im; }
|
||
|
|
||
|
value_type& real() { return re; }
|
||
|
value_type& imag() { return im; }
|
||
|
#else
|
||
|
BOOST_CONSTEXPR complex(const value_type& r = value_type(),
|
||
|
const value_type& i = value_type()) : re(r),
|
||
|
im(i) { }
|
||
|
|
||
|
template<typename X>
|
||
|
BOOST_CONSTEXPR complex(const complex<X>& x) : re(x.real()),
|
||
|
im(x.imag()) { }
|
||
|
|
||
|
value_type real() const { return re; }
|
||
|
value_type imag() const { return im; }
|
||
|
#endif
|
||
|
|
||
|
void real(value_type r) { re = r; }
|
||
|
void imag(value_type i) { im = i; }
|
||
|
|
||
|
complex<value_type>& operator=(const value_type& v)
|
||
|
{
|
||
|
re = v;
|
||
|
im = value_type(0);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
complex<value_type>& operator+=(const value_type& v)
|
||
|
{
|
||
|
re += v;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
complex<value_type>& operator-=(const value_type& v)
|
||
|
{
|
||
|
re -= v;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
complex<value_type>& operator*=(const value_type& v)
|
||
|
{
|
||
|
re *= v;
|
||
|
im *= v;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
complex<value_type>& operator/=(const value_type& v)
|
||
|
{
|
||
|
re /= v;
|
||
|
im /= v;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template<typename X>
|
||
|
complex<value_type>& operator=(const complex<X>& x)
|
||
|
{
|
||
|
re = x.real();
|
||
|
im = x.imag();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template<typename X>
|
||
|
complex<value_type>& operator+=(const complex<X>& x)
|
||
|
{
|
||
|
re += x.real();
|
||
|
im += x.imag();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template<typename X>
|
||
|
complex<value_type>& operator-=(const complex<X>& x)
|
||
|
{
|
||
|
re -= x.real();
|
||
|
im -= x.imag();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template<typename X>
|
||
|
complex<value_type>& operator*=(const complex<X>& x)
|
||
|
{
|
||
|
const value_type tmp_real = (re * x.real()) - (im * x.imag());
|
||
|
im = (re * x.imag()) + (im * x.real());
|
||
|
re = tmp_real;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template<typename X>
|
||
|
complex<value_type>& operator/=(const complex<X>& x)
|
||
|
{
|
||
|
const value_type tmp_real = (re * x.real()) + (im * x.imag());
|
||
|
const value_type the_norm = std::norm(x);
|
||
|
im = ((im * x.real()) - (re * x.imag())) / the_norm;
|
||
|
re = tmp_real / the_norm;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
value_type re;
|
||
|
value_type im;
|
||
|
};
|
||
|
|
||
|
// Constructors from built-in complex representation of floating-point types.
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<float>& f) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( f.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( f.imag())) { }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<double>& d) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( d.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( d.imag())) { }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<long double>& ld) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(ld.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(ld.imag())) { }
|
||
|
} // namespace std
|
||
|
|
||
|
namespace boost { namespace math { namespace cstdfloat { namespace detail {
|
||
|
template<class float_type> inline std::complex<float_type> multiply_by_i(const std::complex<float_type>& x)
|
||
|
{
|
||
|
// Multiply x (in C) by I (the imaginary component), and return the result.
|
||
|
return std::complex<float_type>(-x.imag(), x.real());
|
||
|
}
|
||
|
} } } } // boost::math::cstdfloat::detail
|
||
|
|
||
|
namespace std
|
||
|
{
|
||
|
// ISO/IEC 14882:2011, Section 26.4.7, specific values.
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE real(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return x.real(); }
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE imag(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return x.imag(); }
|
||
|
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE abs (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { using std::sqrt; return sqrt ((real(x) * real(x)) + (imag(x) * imag(x))); }
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE arg (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { using std::atan2; return atan2(x.imag(), x.real()); }
|
||
|
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE norm(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return (real(x) * real(x)) + (imag(x) * imag(x)); }
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> conj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(x.real(), -x.imag()); }
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> proj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE m = (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)();
|
||
|
if ((x.real() > m)
|
||
|
|| (x.real() < -m)
|
||
|
|| (x.imag() > m)
|
||
|
|| (x.imag() < -m))
|
||
|
{
|
||
|
// We have an infinity, return a normalized infinity, respecting the sign of the imaginary part:
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(), x.imag() < 0 ? -0 : 0);
|
||
|
}
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> polar(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& rho,
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& theta)
|
||
|
{
|
||
|
using std::sin;
|
||
|
using std::cos;
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(rho * cos(theta), rho * sin(theta));
|
||
|
}
|
||
|
|
||
|
// Global add, sub, mul, div.
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() + v.real(), u.imag() + v.imag()); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() - v.real(), u.imag() - v.imag()); }
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v)
|
||
|
{
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>((u.real() * v.real()) - (u.imag() * v.imag()),
|
||
|
(u.real() * v.imag()) + (u.imag() * v.real()));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v)
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE the_norm = std::norm(v);
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(((u.real() * v.real()) + (u.imag() * v.imag())) / the_norm,
|
||
|
((u.imag() * v.real()) - (u.real() * v.imag())) / the_norm);
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() + v, u.imag()); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() - v, u.imag()); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() * v, u.imag() * v); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() / v, u.imag() / v); }
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u + v.real(), v.imag()); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u - v.real(), -v.imag()); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u * v.real(), u * v.imag()); }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE v_norm = norm(v); return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>((u * v.real()) / v_norm, (-u * v.imag()) / v_norm); }
|
||
|
|
||
|
// Unary plus / minus.
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u) { return u; }
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(-u.real(), -u.imag()); }
|
||
|
|
||
|
// Equality and inequality.
|
||
|
inline bool operator==(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x.real() == y.real()) && (x.imag() == y.imag())); }
|
||
|
inline bool operator==(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& y) { return ((x.real() == y) && (x.imag() == BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
|
||
|
inline bool operator==(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x == y.real()) && (y.imag() == BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
|
||
|
inline bool operator!=(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x.real() != y.real()) || (x.imag() != y.imag())); }
|
||
|
inline bool operator!=(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& y) { return ((x.real() != y) || (x.imag() != BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
|
||
|
inline bool operator!=(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x != y.real()) || (y.imag() != BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
|
||
|
|
||
|
// ISO/IEC 14882:2011, Section 26.4.8, transcendentals.
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sqrt(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::fabs;
|
||
|
using std::sqrt;
|
||
|
|
||
|
// Compute sqrt(x) for x in C:
|
||
|
// sqrt(x) = (s , xi / 2s) : for xr > 0,
|
||
|
// (|xi| / 2s, +-s) : for xr < 0,
|
||
|
// (sqrt(xi), sqrt(xi) : for xr = 0,
|
||
|
// where s = sqrt{ [ |xr| + sqrt(xr^2 + xi^2) ] / 2 },
|
||
|
// and the +- sign is the same as the sign of xi.
|
||
|
|
||
|
if(x.real() > 0)
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE s = sqrt((fabs(x.real()) + std::abs(x)) / 2);
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(s, x.imag() / (s * 2));
|
||
|
}
|
||
|
else if(x.real() < 0)
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE s = sqrt((fabs(x.real()) + std::abs(x)) / 2);
|
||
|
|
||
|
const bool imag_is_neg = (x.imag() < 0);
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(fabs(x.imag()) / (s * 2), (imag_is_neg ? -s : s));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sqrt_xi_half = sqrt(x.imag() / 2);
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sqrt_xi_half, sqrt_xi_half);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sin(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::sin;
|
||
|
using std::cos;
|
||
|
using std::exp;
|
||
|
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sin_x * cosh_y, cos_x * sinh_y);
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cos(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::sin;
|
||
|
using std::cos;
|
||
|
using std::exp;
|
||
|
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_x * cosh_y, -(sin_x * sinh_y));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tan(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::sin;
|
||
|
using std::cos;
|
||
|
using std::exp;
|
||
|
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
|
||
|
|
||
|
return ( complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sin_x * cosh_y, cos_x * sinh_y)
|
||
|
/ complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_x * cosh_y, -sin_x * sinh_y));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asin(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
return -boost::math::cstdfloat::detail::multiply_by_i(std::log(boost::math::cstdfloat::detail::multiply_by_i(x) + std::sqrt(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - (x * x))));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acos(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
return boost::math::constants::half_pi<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>() - std::asin(x);
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atan(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> izz = boost::math::cstdfloat::detail::multiply_by_i(x);
|
||
|
|
||
|
return boost::math::cstdfloat::detail::multiply_by_i(std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - izz) - std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) + izz)) / 2;
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> exp(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::exp;
|
||
|
|
||
|
return std::polar(exp(x.real()), x.imag());
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::atan2;
|
||
|
using std::log;
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(log(std::norm(x)) / 2, atan2(x.imag(), x.real()));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log10(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
return std::log(x) / boost::math::constants::ln_ten<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>();
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
|
||
|
int p)
|
||
|
{
|
||
|
const bool re_isneg = (x.real() < 0);
|
||
|
const bool re_isnan = (x.real() != x.real());
|
||
|
const bool re_isinf = ((!re_isneg) ? bool(+x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
|
||
|
: bool(-x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
|
||
|
|
||
|
const bool im_isneg = (x.imag() < 0);
|
||
|
const bool im_isnan = (x.imag() != x.imag());
|
||
|
const bool im_isinf = ((!im_isneg) ? bool(+x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
|
||
|
: bool(-x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
|
||
|
|
||
|
if(re_isnan || im_isnan) { return x; }
|
||
|
|
||
|
if(re_isinf || im_isinf)
|
||
|
{
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN(),
|
||
|
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN());
|
||
|
}
|
||
|
|
||
|
if(p < 0)
|
||
|
{
|
||
|
if(std::abs(x) < (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::min)())
|
||
|
{
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(),
|
||
|
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / std::pow(x, -p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(p == 0)
|
||
|
{
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(p == 1) { return x; }
|
||
|
|
||
|
if(std::abs(x) > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE re = (re_isneg ? -std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
|
||
|
: +std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
|
||
|
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE im = (im_isneg ? -std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
|
||
|
: +std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(re, im);
|
||
|
}
|
||
|
|
||
|
if (p == 2) { return (x * x); }
|
||
|
else if(p == 3) { return ((x * x) * x); }
|
||
|
else if(p == 4) { const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> x2 = (x * x); return (x2 * x2); }
|
||
|
else
|
||
|
{
|
||
|
// The variable xn stores the binary powers of x.
|
||
|
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> result(((p % 2) != 0) ? x : complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1)));
|
||
|
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> xn (x);
|
||
|
|
||
|
int p2 = p;
|
||
|
|
||
|
while((p2 /= 2) != 0)
|
||
|
{
|
||
|
// Square xn for each binary power.
|
||
|
xn *= xn;
|
||
|
|
||
|
const bool has_binary_power = ((p2 % 2) != 0);
|
||
|
|
||
|
if(has_binary_power)
|
||
|
{
|
||
|
// Multiply the result with each binary power contained in the exponent.
|
||
|
result *= xn;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& a)
|
||
|
{
|
||
|
return std::exp(a * std::log(x));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& a)
|
||
|
{
|
||
|
return std::exp(a * std::log(x));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x,
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& a)
|
||
|
{
|
||
|
return std::exp(a * std::log(x));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::sin;
|
||
|
using std::cos;
|
||
|
using std::exp;
|
||
|
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_y = sin (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_y = cos (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xp = exp (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xm = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_xp;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_x = (exp_xp - exp_xm) / 2;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_x = (exp_xp + exp_xm) / 2;
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_y * sinh_x, cosh_x * sin_y);
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
using std::sin;
|
||
|
using std::cos;
|
||
|
using std::exp;
|
||
|
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_y = sin (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_y = cos (x.imag());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xp = exp (x.real());
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xm = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_xp;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_x = (exp_xp - exp_xm) / 2;
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_x = (exp_xp + exp_xm) / 2;
|
||
|
|
||
|
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_y * cosh_x, sin_y * sinh_x);
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> ex_plus = std::exp(x);
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> ex_minus = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / ex_plus;
|
||
|
|
||
|
return (ex_plus - ex_minus) / (ex_plus + ex_minus);
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
return std::log(x + std::sqrt((x * x) + BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1)));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE my_one(1);
|
||
|
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> zp(x.real() + my_one, x.imag());
|
||
|
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> zm(x.real() - my_one, x.imag());
|
||
|
|
||
|
return std::log(x + (zp * std::sqrt(zm / zp)));
|
||
|
}
|
||
|
|
||
|
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
return (std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) + x) - std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - x)) / 2.0;
|
||
|
}
|
||
|
|
||
|
template<class char_type, class traits_type>
|
||
|
inline std::basic_ostream<char_type, traits_type>& operator<<(std::basic_ostream<char_type, traits_type>& os, const std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
std::basic_ostringstream<char_type, traits_type> ostr;
|
||
|
|
||
|
ostr.flags(os.flags());
|
||
|
ostr.imbue(os.getloc());
|
||
|
ostr.precision(os.precision());
|
||
|
|
||
|
ostr << char_type('(')
|
||
|
<< x.real()
|
||
|
<< char_type(',')
|
||
|
<< x.imag()
|
||
|
<< char_type(')');
|
||
|
|
||
|
return (os << ostr.str());
|
||
|
}
|
||
|
|
||
|
template<class char_type, class traits_type>
|
||
|
inline std::basic_istream<char_type, traits_type>& operator>>(std::basic_istream<char_type, traits_type>& is, std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
|
||
|
{
|
||
|
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE rx;
|
||
|
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE ix;
|
||
|
|
||
|
char_type the_char;
|
||
|
|
||
|
static_cast<void>(is >> the_char);
|
||
|
|
||
|
if(the_char == static_cast<char_type>('('))
|
||
|
{
|
||
|
static_cast<void>(is >> rx >> the_char);
|
||
|
|
||
|
if(the_char == static_cast<char_type>(','))
|
||
|
{
|
||
|
static_cast<void>(is >> ix >> the_char);
|
||
|
|
||
|
if(the_char == static_cast<char_type>(')'))
|
||
|
{
|
||
|
x = complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(rx, ix);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
is.setstate(ios_base::failbit);
|
||
|
}
|
||
|
}
|
||
|
else if(the_char == static_cast<char_type>(')'))
|
||
|
{
|
||
|
x = rx;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
is.setstate(ios_base::failbit);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
static_cast<void>(is.putback(the_char));
|
||
|
|
||
|
static_cast<void>(is >> rx);
|
||
|
|
||
|
x = rx;
|
||
|
}
|
||
|
|
||
|
return is;
|
||
|
}
|
||
|
} // namespace std
|
||
|
|
||
|
#endif // _BOOST_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
|