608 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			608 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | // boost\math\special_functions\negative_binomial.hpp | ||
|  | 
 | ||
|  | // Copyright Paul A. Bristow 2007. | ||
|  | // Copyright John Maddock 2007. | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the | ||
|  | // Boost Software License, Version 1.0. | ||
|  | // (See accompanying file LICENSE_1_0.txt | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | // http://en.wikipedia.org/wiki/negative_binomial_distribution | ||
|  | // http://mathworld.wolfram.com/NegativeBinomialDistribution.html | ||
|  | // http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html | ||
|  | 
 | ||
|  | // The negative binomial distribution NegativeBinomialDistribution[n, p] | ||
|  | // is the distribution of the number (k) of failures that occur in a sequence of trials before | ||
|  | // r successes have occurred, where the probability of success in each trial is p. | ||
|  | 
 | ||
|  | // In a sequence of Bernoulli trials or events | ||
|  | // (independent, yes or no, succeed or fail) with success_fraction probability p, | ||
|  | // negative_binomial is the probability that k or fewer failures | ||
|  | // preceed the r th trial's success. | ||
|  | // random variable k is the number of failures (NOT the probability). | ||
|  | 
 | ||
|  | // Negative_binomial distribution is a discrete probability distribution. | ||
|  | // But note that the negative binomial distribution | ||
|  | // (like others including the binomial, Poisson & Bernoulli) | ||
|  | // is strictly defined as a discrete function: only integral values of k are envisaged. | ||
|  | // However because of the method of calculation using a continuous gamma function, | ||
|  | // it is convenient to treat it as if a continous function, | ||
|  | // and permit non-integral values of k. | ||
|  | 
 | ||
|  | // However, by default the policy is to use discrete_quantile_policy. | ||
|  | 
 | ||
|  | // To enforce the strict mathematical model, users should use conversion | ||
|  | // on k outside this function to ensure that k is integral. | ||
|  | 
 | ||
|  | // MATHCAD cumulative negative binomial pnbinom(k, n, p) | ||
|  | 
 | ||
|  | // Implementation note: much greater speed, and perhaps greater accuracy, | ||
|  | // might be achieved for extreme values by using a normal approximation. | ||
|  | // This is NOT been tested or implemented. | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP | ||
|  | #define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP | ||
|  | 
 | ||
|  | #include <boost/math/distributions/fwd.hpp> | ||
|  | #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). | ||
|  | #include <boost/math/distributions/complement.hpp> // complement. | ||
|  | #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. | ||
|  | #include <boost/math/special_functions/fpclassify.hpp> // isnan. | ||
|  | #include <boost/math/tools/roots.hpp> // for root finding. | ||
|  | #include <boost/math/distributions/detail/inv_discrete_quantile.hpp> | ||
|  | 
 | ||
|  | #include <boost/type_traits/is_floating_point.hpp> | ||
|  | #include <boost/type_traits/is_integral.hpp> | ||
|  | #include <boost/type_traits/is_same.hpp> | ||
|  | #include <boost/mpl/if.hpp> | ||
|  | 
 | ||
|  | #include <limits> // using std::numeric_limits; | ||
|  | #include <utility> | ||
|  | 
 | ||
|  | #if defined (BOOST_MSVC) | ||
|  | #  pragma warning(push) | ||
|  | // This believed not now necessary, so commented out. | ||
|  | //#  pragma warning(disable: 4702) // unreachable code. | ||
|  | // in domain_error_imp in error_handling. | ||
|  | #endif | ||
|  | 
 | ||
|  | namespace boost | ||
|  | { | ||
|  |   namespace math | ||
|  |   { | ||
|  |     namespace negative_binomial_detail | ||
|  |     { | ||
|  |       // Common error checking routines for negative binomial distribution functions: | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if( !(boost::math::isfinite)(r) || (r <= 0) ) | ||
|  |         { | ||
|  |           *result = policies::raise_domain_error<RealType>( | ||
|  |             function, | ||
|  |             "Number of successes argument is %1%, but must be > 0 !", r, pol); | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) | ||
|  |         { | ||
|  |           *result = policies::raise_domain_error<RealType>( | ||
|  |             function, | ||
|  |             "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         return check_success_fraction(function, p, result, pol) | ||
|  |           && check_successes(function, r, result, pol); | ||
|  |       } | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if(check_dist(function, r, p, result, pol) == false) | ||
|  |         { | ||
|  |           return false; | ||
|  |         } | ||
|  |         if( !(boost::math::isfinite)(k) || (k < 0) ) | ||
|  |         { // Check k failures. | ||
|  |           *result = policies::raise_domain_error<RealType>( | ||
|  |             function, | ||
|  |             "Number of failures argument is %1%, but must be >= 0 !", k, pol); | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } // Check_dist_and_k | ||
|  | 
 | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if((check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false) | ||
|  |         { | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } // check_dist_and_prob | ||
|  |     } //  namespace negative_binomial_detail | ||
|  | 
 | ||
|  |     template <class RealType = double, class Policy = policies::policy<> > | ||
|  |     class negative_binomial_distribution | ||
|  |     { | ||
|  |     public: | ||
|  |       typedef RealType value_type; | ||
|  |       typedef Policy policy_type; | ||
|  | 
 | ||
|  |       negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p) | ||
|  |       { // Constructor. | ||
|  |         RealType result; | ||
|  |         negative_binomial_detail::check_dist( | ||
|  |           "negative_binomial_distribution<%1%>::negative_binomial_distribution", | ||
|  |           m_r, // Check successes r > 0. | ||
|  |           m_p, // Check success_fraction 0 <= p <= 1. | ||
|  |           &result, Policy()); | ||
|  |       } // negative_binomial_distribution constructor. | ||
|  | 
 | ||
|  |       // Private data getter class member functions. | ||
|  |       RealType success_fraction() const | ||
|  |       { // Probability of success as fraction in range 0 to 1. | ||
|  |         return m_p; | ||
|  |       } | ||
|  |       RealType successes() const | ||
|  |       { // Total number of successes r. | ||
|  |         return m_r; | ||
|  |       } | ||
|  | 
 | ||
|  |       static RealType find_lower_bound_on_p( | ||
|  |         RealType trials, | ||
|  |         RealType successes, | ||
|  |         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p"; | ||
|  |         RealType result = 0;  // of error checks. | ||
|  |         RealType failures = trials - successes; | ||
|  |         if(false == detail::check_probability(function, alpha, &result, Policy()) | ||
|  |           && negative_binomial_detail::check_dist_and_k( | ||
|  |           function, successes, RealType(0), failures, &result, Policy())) | ||
|  |         { | ||
|  |           return result; | ||
|  |         } | ||
|  |         // Use complement ibeta_inv function for lower bound. | ||
|  |         // This is adapted from the corresponding binomial formula | ||
|  |         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm | ||
|  |         // This is a Clopper-Pearson interval, and may be overly conservative, | ||
|  |         // see also "A Simple Improved Inferential Method for Some | ||
|  |         // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY | ||
|  |         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf | ||
|  |         // | ||
|  |         return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); | ||
|  |       } // find_lower_bound_on_p | ||
|  | 
 | ||
|  |       static RealType find_upper_bound_on_p( | ||
|  |         RealType trials, | ||
|  |         RealType successes, | ||
|  |         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p"; | ||
|  |         RealType result = 0;  // of error checks. | ||
|  |         RealType failures = trials - successes; | ||
|  |         if(false == negative_binomial_detail::check_dist_and_k( | ||
|  |           function, successes, RealType(0), failures, &result, Policy()) | ||
|  |           && detail::check_probability(function, alpha, &result, Policy())) | ||
|  |         { | ||
|  |           return result; | ||
|  |         } | ||
|  |         if(failures == 0) | ||
|  |            return 1; | ||
|  |         // Use complement ibetac_inv function for upper bound. | ||
|  |         // Note adjusted failures value: *not* failures+1 as usual. | ||
|  |         // This is adapted from the corresponding binomial formula | ||
|  |         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm | ||
|  |         // This is a Clopper-Pearson interval, and may be overly conservative, | ||
|  |         // see also "A Simple Improved Inferential Method for Some | ||
|  |         // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY | ||
|  |         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf | ||
|  |         // | ||
|  |         return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); | ||
|  |       } // find_upper_bound_on_p | ||
|  | 
 | ||
|  |       // Estimate number of trials : | ||
|  |       // "How many trials do I need to be P% sure of seeing k or fewer failures?" | ||
|  | 
 | ||
|  |       static RealType find_minimum_number_of_trials( | ||
|  |         RealType k,     // number of failures (k >= 0). | ||
|  |         RealType p,     // success fraction 0 <= p <= 1. | ||
|  |         RealType alpha) // risk level threshold 0 <= alpha <= 1. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials"; | ||
|  |         // Error checks: | ||
|  |         RealType result = 0; | ||
|  |         if(false == negative_binomial_detail::check_dist_and_k( | ||
|  |           function, RealType(1), p, k, &result, Policy()) | ||
|  |           && detail::check_probability(function, alpha, &result, Policy())) | ||
|  |         { return result; } | ||
|  | 
 | ||
|  |         result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k | ||
|  |         return result + k; | ||
|  |       } // RealType find_number_of_failures | ||
|  | 
 | ||
|  |       static RealType find_maximum_number_of_trials( | ||
|  |         RealType k,     // number of failures (k >= 0). | ||
|  |         RealType p,     // success fraction 0 <= p <= 1. | ||
|  |         RealType alpha) // risk level threshold 0 <= alpha <= 1. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials"; | ||
|  |         // Error checks: | ||
|  |         RealType result = 0; | ||
|  |         if(false == negative_binomial_detail::check_dist_and_k( | ||
|  |           function, RealType(1), p, k, &result, Policy()) | ||
|  |           &&  detail::check_probability(function, alpha, &result, Policy())) | ||
|  |         { return result; } | ||
|  | 
 | ||
|  |         result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k | ||
|  |         return result + k; | ||
|  |       } // RealType find_number_of_trials complemented | ||
|  | 
 | ||
|  |     private: | ||
|  |       RealType m_r; // successes. | ||
|  |       RealType m_p; // success_fraction | ||
|  |     }; // template <class RealType, class Policy> class negative_binomial_distribution | ||
|  | 
 | ||
|  |     typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */) | ||
|  |     { // Range of permissible values for random variable k. | ||
|  |        using boost::math::tools::max_value; | ||
|  |        return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */) | ||
|  |     { // Range of supported values for random variable k. | ||
|  |        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. | ||
|  |        using boost::math::tools::max_value; | ||
|  |        return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer? | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     { // Mean of Negative Binomial distribution = r(1-p)/p. | ||
|  |       return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction(); | ||
|  |     } // mean | ||
|  | 
 | ||
|  |     //template <class RealType, class Policy> | ||
|  |     //inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     //{ // Median of negative_binomial_distribution is not defined. | ||
|  |     //  return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN()); | ||
|  |     //} // median | ||
|  |     // Now implemented via quantile(half) in derived accessors. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p] | ||
|  |       BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |       return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction()); | ||
|  |     } // mode | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p)) | ||
|  |       BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType r = dist.successes(); | ||
|  | 
 | ||
|  |       return (2 - p) / | ||
|  |         sqrt(r * (1 - p)); | ||
|  |     } // skewness | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     { // kurtosis of Negative Binomial distribution | ||
|  |       // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3 | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType r = dist.successes(); | ||
|  |       return 3 + (6 / r) + ((p * p) / (r * (1 - p))); | ||
|  |     } // kurtosis | ||
|  | 
 | ||
|  |      template <class RealType, class Policy> | ||
|  |     inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     { // kurtosis excess of Negative Binomial distribution | ||
|  |       // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType r = dist.successes(); | ||
|  |       return (6 - p * (6-p)) / (r * (1-p)); | ||
|  |     } // kurtosis_excess | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     { // Variance of Binomial distribution = r (1-p) / p^2. | ||
|  |       return  dist.successes() * (1 - dist.success_fraction()) | ||
|  |         / (dist.success_fraction() * dist.success_fraction()); | ||
|  |     } // variance | ||
|  | 
 | ||
|  |     // RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     // standard_deviation provided by derived accessors. | ||
|  |     // RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     // hazard of Negative Binomial distribution provided by derived accessors. | ||
|  |     // RealType chf(const negative_binomial_distribution<RealType, Policy>& dist) | ||
|  |     // chf of Negative Binomial distribution provided by derived accessors. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k) | ||
|  |     { // Probability Density/Mass Function. | ||
|  |       BOOST_FPU_EXCEPTION_GUARD | ||
|  | 
 | ||
|  |       static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)"; | ||
|  | 
 | ||
|  |       RealType r = dist.successes(); | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType result = 0; | ||
|  |       if(false == negative_binomial_detail::check_dist_and_k( | ||
|  |         function, | ||
|  |         r, | ||
|  |         dist.success_fraction(), | ||
|  |         k, | ||
|  |         &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  | 
 | ||
|  |       result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy()); | ||
|  |       // Equivalent to: | ||
|  |       // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k); | ||
|  |       return result; | ||
|  |     } // negative_binomial_pdf | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k) | ||
|  |     { // Cumulative Distribution Function of Negative Binomial. | ||
|  |       static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; | ||
|  |       using boost::math::ibeta; // Regularized incomplete beta function. | ||
|  |       // k argument may be integral, signed, or unsigned, or floating point. | ||
|  |       // If necessary, it has already been promoted from an integral type. | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType r = dist.successes(); | ||
|  |       // Error check: | ||
|  |       RealType result = 0; | ||
|  |       if(false == negative_binomial_detail::check_dist_and_k( | ||
|  |         function, | ||
|  |         r, | ||
|  |         dist.success_fraction(), | ||
|  |         k, | ||
|  |         &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  | 
 | ||
|  |       RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy()); | ||
|  |       // Ip(r, k+1) = ibeta(r, k+1, p) | ||
|  |       return probability; | ||
|  |     } // cdf Cumulative Distribution Function Negative Binomial. | ||
|  | 
 | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c) | ||
|  |       { // Complemented Cumulative Distribution Function Negative Binomial. | ||
|  | 
 | ||
|  |       static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; | ||
|  |       using boost::math::ibetac; // Regularized incomplete beta function complement. | ||
|  |       // k argument may be integral, signed, or unsigned, or floating point. | ||
|  |       // If necessary, it has already been promoted from an integral type. | ||
|  |       RealType const& k = c.param; | ||
|  |       negative_binomial_distribution<RealType, Policy> const& dist = c.dist; | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType r = dist.successes(); | ||
|  |       // Error check: | ||
|  |       RealType result = 0; | ||
|  |       if(false == negative_binomial_detail::check_dist_and_k( | ||
|  |         function, | ||
|  |         r, | ||
|  |         p, | ||
|  |         k, | ||
|  |         &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  |       // Calculate cdf negative binomial using the incomplete beta function. | ||
|  |       // Use of ibeta here prevents cancellation errors in calculating | ||
|  |       // 1-p if p is very small, perhaps smaller than machine epsilon. | ||
|  |       // Ip(k+1, r) = ibetac(r, k+1, p) | ||
|  |       // constrain_probability here? | ||
|  |      RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy()); | ||
|  |       // Numerical errors might cause probability to be slightly outside the range < 0 or > 1. | ||
|  |       // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits. | ||
|  |       return probability; | ||
|  |     } // cdf Cumulative Distribution Function Negative Binomial. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P) | ||
|  |     { // Quantile, percentile/100 or Percent Point Negative Binomial function. | ||
|  |       // Return the number of expected failures k for a given probability p. | ||
|  | 
 | ||
|  |       // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability. | ||
|  |       // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability. | ||
|  |       // k argument may be integral, signed, or unsigned, or floating point. | ||
|  |       // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y | ||
|  |       static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; | ||
|  |       BOOST_MATH_STD_USING // ADL of std functions. | ||
|  | 
 | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType r = dist.successes(); | ||
|  |       // Check dist and P. | ||
|  |       RealType result = 0; | ||
|  |       if(false == negative_binomial_detail::check_dist_and_prob | ||
|  |         (function, r, p, P, &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Special cases. | ||
|  |       if (P == 1) | ||
|  |       {  // Would need +infinity failures for total confidence. | ||
|  |         result = policies::raise_overflow_error<RealType>( | ||
|  |             function, | ||
|  |             "Probability argument is 1, which implies infinite failures !", Policy()); | ||
|  |         return result; | ||
|  |        // usually means return +std::numeric_limits<RealType>::infinity(); | ||
|  |        // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR | ||
|  |       } | ||
|  |       if (P == 0) | ||
|  |       { // No failures are expected if P = 0. | ||
|  |         return 0; // Total trials will be just dist.successes. | ||
|  |       } | ||
|  |       if (P <= pow(dist.success_fraction(), dist.successes())) | ||
|  |       { // p <= pdf(dist, 0) == cdf(dist, 0) | ||
|  |         return 0; | ||
|  |       } | ||
|  |       if(p == 0) | ||
|  |       {  // Would need +infinity failures for total confidence. | ||
|  |          result = policies::raise_overflow_error<RealType>( | ||
|  |             function, | ||
|  |             "Success fraction is 0, which implies infinite failures !", Policy()); | ||
|  |          return result; | ||
|  |          // usually means return +std::numeric_limits<RealType>::infinity(); | ||
|  |          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR | ||
|  |       } | ||
|  |       /* | ||
|  |       // Calculate quantile of negative_binomial using the inverse incomplete beta function. | ||
|  |       using boost::math::ibeta_invb; | ||
|  |       return ibeta_invb(r, p, P, Policy()) - 1; // | ||
|  |       */ | ||
|  |       RealType guess = 0; | ||
|  |       RealType factor = 5; | ||
|  |       if(r * r * r * P * p > 0.005) | ||
|  |          guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy()); | ||
|  | 
 | ||
|  |       if(guess < 10) | ||
|  |       { | ||
|  |          // | ||
|  |          // Cornish-Fisher Negative binomial approximation not accurate in this area: | ||
|  |          // | ||
|  |          guess = (std::min)(RealType(r * 2), RealType(10)); | ||
|  |       } | ||
|  |       else | ||
|  |          factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f); | ||
|  |       BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); | ||
|  |       // | ||
|  |       // Max iterations permitted: | ||
|  |       // | ||
|  |       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); | ||
|  |       typedef typename Policy::discrete_quantile_type discrete_type; | ||
|  |       return detail::inverse_discrete_quantile( | ||
|  |          dist, | ||
|  |          P, | ||
|  |          false, | ||
|  |          guess, | ||
|  |          factor, | ||
|  |          RealType(1), | ||
|  |          discrete_type(), | ||
|  |          max_iter); | ||
|  |     } // RealType quantile(const negative_binomial_distribution dist, p) | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c) | ||
|  |     {  // Quantile or Percent Point Binomial function. | ||
|  |        // Return the number of expected failures k for a given | ||
|  |        // complement of the probability Q = 1 - P. | ||
|  |        static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; | ||
|  |        BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |        // Error checks: | ||
|  |        RealType Q = c.param; | ||
|  |        const negative_binomial_distribution<RealType, Policy>& dist = c.dist; | ||
|  |        RealType p = dist.success_fraction(); | ||
|  |        RealType r = dist.successes(); | ||
|  |        RealType result = 0; | ||
|  |        if(false == negative_binomial_detail::check_dist_and_prob( | ||
|  |           function, | ||
|  |           r, | ||
|  |           p, | ||
|  |           Q, | ||
|  |           &result, Policy())) | ||
|  |        { | ||
|  |           return result; | ||
|  |        } | ||
|  | 
 | ||
|  |        // Special cases: | ||
|  |        // | ||
|  |        if(Q == 1) | ||
|  |        {  // There may actually be no answer to this question, | ||
|  |           // since the probability of zero failures may be non-zero, | ||
|  |           return 0; // but zero is the best we can do: | ||
|  |        } | ||
|  |        if(Q == 0) | ||
|  |        {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty. | ||
|  |           // Would need +infinity failures for total confidence. | ||
|  |           result = policies::raise_overflow_error<RealType>( | ||
|  |              function, | ||
|  |              "Probability argument complement is 0, which implies infinite failures !", Policy()); | ||
|  |           return result; | ||
|  |           // usually means return +std::numeric_limits<RealType>::infinity(); | ||
|  |           // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR | ||
|  |        } | ||
|  |        if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) | ||
|  |        {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0) | ||
|  |           return 0; // | ||
|  |        } | ||
|  |        if(p == 0) | ||
|  |        {  // Success fraction is 0 so infinite failures to achieve certainty. | ||
|  |           // Would need +infinity failures for total confidence. | ||
|  |           result = policies::raise_overflow_error<RealType>( | ||
|  |              function, | ||
|  |              "Success fraction is 0, which implies infinite failures !", Policy()); | ||
|  |           return result; | ||
|  |           // usually means return +std::numeric_limits<RealType>::infinity(); | ||
|  |           // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR | ||
|  |        } | ||
|  |        //return ibetac_invb(r, p, Q, Policy()) -1; | ||
|  |        RealType guess = 0; | ||
|  |        RealType factor = 5; | ||
|  |        if(r * r * r * (1-Q) * p > 0.005) | ||
|  |           guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy()); | ||
|  | 
 | ||
|  |        if(guess < 10) | ||
|  |        { | ||
|  |           // | ||
|  |           // Cornish-Fisher Negative binomial approximation not accurate in this area: | ||
|  |           // | ||
|  |           guess = (std::min)(RealType(r * 2), RealType(10)); | ||
|  |        } | ||
|  |        else | ||
|  |           factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f); | ||
|  |        BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); | ||
|  |        // | ||
|  |        // Max iterations permitted: | ||
|  |        // | ||
|  |        boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); | ||
|  |        typedef typename Policy::discrete_quantile_type discrete_type; | ||
|  |        return detail::inverse_discrete_quantile( | ||
|  |           dist, | ||
|  |           Q, | ||
|  |           true, | ||
|  |           guess, | ||
|  |           factor, | ||
|  |           RealType(1), | ||
|  |           discrete_type(), | ||
|  |           max_iter); | ||
|  |     } // quantile complement | ||
|  | 
 | ||
|  |  } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | // This include must be at the end, *after* the accessors | ||
|  | // for this distribution have been defined, in order to | ||
|  | // keep compilers that support two-phase lookup happy. | ||
|  | #include <boost/math/distributions/detail/derived_accessors.hpp> | ||
|  | 
 | ||
|  | #if defined (BOOST_MSVC) | ||
|  | # pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP |