618 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			618 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2013 Christopher Kormanyos | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | // | ||
|  | // This work is based on an earlier work: | ||
|  | // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations", | ||
|  | // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469 | ||
|  | // | ||
|  | // This header contains implementation details for estimating the zeros | ||
|  | // of cylindrical Bessel and Neumann functions on the positive real axis. | ||
|  | // Support is included for both positive as well as negative order. | ||
|  | // Various methods are used to estimate the roots. These include | ||
|  | // empirical curve fitting and McMahon's asymptotic approximation | ||
|  | // for small order, uniform asymptotic expansion for large order, | ||
|  | // and iteration and root interlacing for negative order. | ||
|  | // | ||
|  | #ifndef _BESSEL_JY_ZERO_2013_01_18_HPP_ | ||
|  |   #define _BESSEL_JY_ZERO_2013_01_18_HPP_ | ||
|  | 
 | ||
|  |   #include <algorithm> | ||
|  |   #include <boost/math/constants/constants.hpp> | ||
|  |   #include <boost/math/special_functions/math_fwd.hpp> | ||
|  |   #include <boost/math/special_functions/cbrt.hpp> | ||
|  |   #include <boost/math/special_functions/detail/airy_ai_bi_zero.hpp> | ||
|  | 
 | ||
|  |   namespace boost { namespace math { | ||
|  |   namespace detail | ||
|  |   { | ||
|  |     namespace bessel_zero | ||
|  |     { | ||
|  |       template<class T> | ||
|  |       T equation_nist_10_21_19(const T& v, const T& a) | ||
|  |       { | ||
|  |         // Get the initial estimate of the m'th root of Jv or Yv. | ||
|  |         // This subroutine is used for the order m with m > 1. | ||
|  |         // The order m has been used to create the input parameter a. | ||
|  | 
 | ||
|  |         // This is Eq. 10.21.19 in the NIST Handbook. | ||
|  |         const T mu                  = (v * v) * 4U; | ||
|  |         const T mu_minus_one        = mu - T(1); | ||
|  |         const T eight_a_inv         = T(1) / (a * 8U); | ||
|  |         const T eight_a_inv_squared = eight_a_inv * eight_a_inv; | ||
|  | 
 | ||
|  |         const T term3 = ((mu_minus_one *  4U) *     ((mu *    7U) -     T(31U) )) / 3U; | ||
|  |         const T term5 = ((mu_minus_one * 32U) *   ((((mu *   83U) -    T(982U) ) * mu) +    T(3779U) )) / 15U; | ||
|  |         const T term7 = ((mu_minus_one * 64U) * ((((((mu * 6949U) - T(153855UL)) * mu) + T(1585743UL)) * mu) - T(6277237UL))) / 105U; | ||
|  | 
 | ||
|  |         return a + ((((                      - term7 | ||
|  |                        * eight_a_inv_squared - term5) | ||
|  |                        * eight_a_inv_squared - term3) | ||
|  |                        * eight_a_inv_squared - mu_minus_one) | ||
|  |                        * eight_a_inv); | ||
|  |       } | ||
|  | 
 | ||
|  |       template<typename T> | ||
|  |       class equation_as_9_3_39_and_its_derivative | ||
|  |       { | ||
|  |       public: | ||
|  |         equation_as_9_3_39_and_its_derivative(const T& zt) : zeta(zt) { } | ||
|  | 
 | ||
|  |         boost::math::tuple<T, T> operator()(const T& z) const | ||
|  |         { | ||
|  |           BOOST_MATH_STD_USING // ADL of std names, needed for acos, sqrt. | ||
|  | 
 | ||
|  |           // Return the function of zeta that is implicitly defined | ||
|  |           // in A&S Eq. 9.3.39 as a function of z. The function is | ||
|  |           // returned along with its derivative with respect to z. | ||
|  | 
 | ||
|  |           const T zsq_minus_one_sqrt = sqrt((z * z) - T(1)); | ||
|  | 
 | ||
|  |           const T the_function( | ||
|  |               zsq_minus_one_sqrt | ||
|  |             - (  acos(T(1) / z) + ((T(2) / 3U) * (zeta * sqrt(zeta))))); | ||
|  | 
 | ||
|  |           const T its_derivative(zsq_minus_one_sqrt / z); | ||
|  | 
 | ||
|  |           return boost::math::tuple<T, T>(the_function, its_derivative); | ||
|  |         } | ||
|  | 
 | ||
|  |       private: | ||
|  |         const equation_as_9_3_39_and_its_derivative& operator=(const equation_as_9_3_39_and_its_derivative&); | ||
|  |         const T zeta; | ||
|  |       }; | ||
|  | 
 | ||
|  |       template<class T> | ||
|  |       static T equation_as_9_5_26(const T& v, const T& ai_bi_root) | ||
|  |       { | ||
|  |         BOOST_MATH_STD_USING // ADL of std names, needed for log, sqrt. | ||
|  | 
 | ||
|  |         // Obtain the estimate of the m'th zero of Jv or Yv. | ||
|  |         // The order m has been used to create the input parameter ai_bi_root. | ||
|  |         // Here, v is larger than about 2.2. The estimate is computed | ||
|  |         // from Abramowitz and Stegun Eqs. 9.5.22 and 9.5.26, page 371. | ||
|  |         // | ||
|  |         // The inversion of z as a function of zeta is mentioned in the text | ||
|  |         // following A&S Eq. 9.5.26. Here, we accomplish the inversion by | ||
|  |         // performing a Taylor expansion of Eq. 9.3.39 for large z to order 2 | ||
|  |         // and solving the resulting quadratic equation, thereby taking | ||
|  |         // the positive root of the quadratic. | ||
|  |         // In other words: (2/3)(-zeta)^(3/2) approx = z + 1/(2z) - pi/2. | ||
|  |         // This leads to: z^2 - [(2/3)(-zeta)^(3/2) + pi/2]z + 1/2 = 0. | ||
|  |         // | ||
|  |         // With this initial estimate, Newton-Raphson iteration is used | ||
|  |         // to refine the value of the estimate of the root of z | ||
|  |         // as a function of zeta. | ||
|  | 
 | ||
|  |         const T v_pow_third(boost::math::cbrt(v)); | ||
|  |         const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third)); | ||
|  | 
 | ||
|  |         // Obtain zeta using the order v combined with the m'th root of | ||
|  |         // an airy function, as shown in  A&S Eq. 9.5.22. | ||
|  |         const T zeta = v_pow_minus_two_thirds * (-ai_bi_root); | ||
|  | 
 | ||
|  |         const T zeta_sqrt = sqrt(zeta); | ||
|  | 
 | ||
|  |         // Set up a quadratic equation based on the Taylor series | ||
|  |         // expansion mentioned above. | ||
|  |         const T b = -((((zeta * zeta_sqrt) * 2U) / 3U) + boost::math::constants::half_pi<T>()); | ||
|  | 
 | ||
|  |         // Solve the quadratic equation, taking the positive root. | ||
|  |         const T z_estimate = (-b + sqrt((b * b) - T(2))) / 2U; | ||
|  | 
 | ||
|  |         // Establish the range, the digits, and the iteration limit | ||
|  |         // for the upcoming root-finding. | ||
|  |         const T range_zmin = (std::max<T>)(z_estimate - T(1), T(1)); | ||
|  |         const T range_zmax = z_estimate + T(1); | ||
|  | 
 | ||
|  |         const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>() * 0.301F)); | ||
|  | 
 | ||
|  |         // Select the maximum allowed iterations based on the number | ||
|  |         // of decimal digits in the numeric type T, being at least 12. | ||
|  |         const boost::uintmax_t iterations_allowed = static_cast<boost::uintmax_t>((std::max)(12, my_digits10 * 2)); | ||
|  | 
 | ||
|  |         boost::uintmax_t iterations_used = iterations_allowed; | ||
|  | 
 | ||
|  |         // Calculate the root of z as a function of zeta. | ||
|  |         const T z = boost::math::tools::newton_raphson_iterate( | ||
|  |           boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative<T>(zeta), | ||
|  |           z_estimate, | ||
|  |           range_zmin, | ||
|  |           range_zmax, | ||
|  |           (std::min)(boost::math::tools::digits<T>(), boost::math::tools::digits<float>()), | ||
|  |           iterations_used); | ||
|  | 
 | ||
|  |         static_cast<void>(iterations_used); | ||
|  | 
 | ||
|  |         // Continue with the implementation of A&S Eq. 9.3.39. | ||
|  |         const T zsq_minus_one      = (z * z) - T(1); | ||
|  |         const T zsq_minus_one_sqrt = sqrt(zsq_minus_one); | ||
|  | 
 | ||
|  |         // This is A&S Eq. 9.3.42. | ||
|  |         const T b0_term_5_24 = T(5) / ((zsq_minus_one * zsq_minus_one_sqrt) * 24U); | ||
|  |         const T b0_term_1_8  = T(1) / ( zsq_minus_one_sqrt * 8U); | ||
|  |         const T b0_term_5_48 = T(5) / ((zeta * zeta) * 48U); | ||
|  | 
 | ||
|  |         const T b0 = -b0_term_5_48 + ((b0_term_5_24 + b0_term_1_8) / zeta_sqrt); | ||
|  | 
 | ||
|  |         // This is the second line of A&S Eq. 9.5.26 for f_k with k = 1. | ||
|  |         const T f1 = ((z * zeta_sqrt) * b0) / zsq_minus_one_sqrt; | ||
|  | 
 | ||
|  |         // This is A&S Eq. 9.5.22 expanded to k = 1 (i.e., one term in the series). | ||
|  |         return (v * z) + (f1 / v); | ||
|  |       } | ||
|  | 
 | ||
|  |       namespace cyl_bessel_j_zero_detail | ||
|  |       { | ||
|  |         template<class T> | ||
|  |         T equation_nist_10_21_40_a(const T& v) | ||
|  |         { | ||
|  |           const T v_pow_third(boost::math::cbrt(v)); | ||
|  |           const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third)); | ||
|  | 
 | ||
|  |           return v * (((((                         + T(0.043) | ||
|  |                           * v_pow_minus_two_thirds - T(0.0908)) | ||
|  |                           * v_pow_minus_two_thirds - T(0.00397)) | ||
|  |                           * v_pow_minus_two_thirds + T(1.033150)) | ||
|  |                           * v_pow_minus_two_thirds + T(1.8557571)) | ||
|  |                           * v_pow_minus_two_thirds + T(1)); | ||
|  |         } | ||
|  | 
 | ||
|  |         template<class T, class Policy> | ||
|  |         class function_object_jv | ||
|  |         { | ||
|  |         public: | ||
|  |           function_object_jv(const T& v, | ||
|  |                              const Policy& pol) : my_v(v), | ||
|  |                                                   my_pol(pol) { } | ||
|  | 
 | ||
|  |           T operator()(const T& x) const | ||
|  |           { | ||
|  |             return boost::math::cyl_bessel_j(my_v, x, my_pol); | ||
|  |           } | ||
|  | 
 | ||
|  |         private: | ||
|  |           const T my_v; | ||
|  |           const Policy& my_pol; | ||
|  |           const function_object_jv& operator=(const function_object_jv&); | ||
|  |         }; | ||
|  | 
 | ||
|  |         template<class T, class Policy> | ||
|  |         class function_object_jv_and_jv_prime | ||
|  |         { | ||
|  |         public: | ||
|  |           function_object_jv_and_jv_prime(const T& v, | ||
|  |                                           const bool order_is_zero, | ||
|  |                                           const Policy& pol) : my_v(v), | ||
|  |                                                                my_order_is_zero(order_is_zero), | ||
|  |                                                                my_pol(pol) { } | ||
|  | 
 | ||
|  |           boost::math::tuple<T, T> operator()(const T& x) const | ||
|  |           { | ||
|  |             // Obtain Jv(x) and Jv'(x). | ||
|  |             // Chris's original code called the Bessel function implementation layer direct,  | ||
|  |             // but that circumvented optimizations for integer-orders.  Call the documented | ||
|  |             // top level functions instead, and let them sort out which implementation to use. | ||
|  |             T j_v; | ||
|  |             T j_v_prime; | ||
|  | 
 | ||
|  |             if(my_order_is_zero) | ||
|  |             { | ||
|  |               j_v       =  boost::math::cyl_bessel_j(0, x, my_pol); | ||
|  |               j_v_prime = -boost::math::cyl_bessel_j(1, x, my_pol); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                       j_v       = boost::math::cyl_bessel_j(  my_v,      x, my_pol); | ||
|  |               const T j_v_m1     (boost::math::cyl_bessel_j(T(my_v - 1), x, my_pol)); | ||
|  |                       j_v_prime = j_v_m1 - ((my_v * j_v) / x); | ||
|  |             } | ||
|  | 
 | ||
|  |             // Return a tuple containing both Jv(x) and Jv'(x). | ||
|  |             return boost::math::make_tuple(j_v, j_v_prime); | ||
|  |           } | ||
|  | 
 | ||
|  |         private: | ||
|  |           const T my_v; | ||
|  |           const bool my_order_is_zero; | ||
|  |           const Policy& my_pol; | ||
|  |           const function_object_jv_and_jv_prime& operator=(const function_object_jv_and_jv_prime&); | ||
|  |         }; | ||
|  | 
 | ||
|  |         template<class T> bool my_bisection_unreachable_tolerance(const T&, const T&) { return false; } | ||
|  | 
 | ||
|  |         template<class T, class Policy> | ||
|  |         T initial_guess(const T& v, const int m, const Policy& pol) | ||
|  |         { | ||
|  |           BOOST_MATH_STD_USING // ADL of std names, needed for floor. | ||
|  | 
 | ||
|  |           // Compute an estimate of the m'th root of cyl_bessel_j. | ||
|  | 
 | ||
|  |           T guess; | ||
|  | 
 | ||
|  |           // There is special handling for negative order. | ||
|  |           if(v < 0) | ||
|  |           { | ||
|  |             if((m == 1) && (v > -0.5F)) | ||
|  |             { | ||
|  |               // For small, negative v, use the results of empirical curve fitting. | ||
|  |               // Mathematica(R) session for the coefficients: | ||
|  |               //  Table[{n, BesselJZero[n, 1]}, {n, -(1/2), 0, 1/10}] | ||
|  |               //  N[%, 20] | ||
|  |               //  Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n] | ||
|  |               guess = (((((    - T(0.2321156900729) | ||
|  |                            * v - T(0.1493247777488)) | ||
|  |                            * v - T(0.15205419167239)) | ||
|  |                            * v + T(0.07814930561249)) | ||
|  |                            * v - T(0.17757573537688)) | ||
|  |                            * v + T(1.542805677045663)) | ||
|  |                            * v + T(2.40482555769577277); | ||
|  | 
 | ||
|  |               return guess; | ||
|  |             } | ||
|  | 
 | ||
|  |             // Create the positive order and extract its positive floor integer part. | ||
|  |             const T vv(-v); | ||
|  |             const T vv_floor(floor(vv)); | ||
|  | 
 | ||
|  |             // The to-be-found root is bracketed by the roots of the | ||
|  |             // Bessel function whose reflected, positive integer order | ||
|  |             // is less than, but nearest to vv. | ||
|  | 
 | ||
|  |             T root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(vv_floor, m, pol); | ||
|  |             T root_lo; | ||
|  | 
 | ||
|  |             if(m == 1) | ||
|  |             { | ||
|  |               // The estimate of the first root for negative order is found using | ||
|  |               // an adaptive range-searching algorithm. | ||
|  |               root_lo = T(root_hi - 0.1F); | ||
|  | 
 | ||
|  |               const bool hi_end_of_bracket_is_negative = (boost::math::cyl_bessel_j(v, root_hi, pol) < 0); | ||
|  | 
 | ||
|  |               while((root_lo > boost::math::tools::epsilon<T>())) | ||
|  |               { | ||
|  |                 const bool lo_end_of_bracket_is_negative = (boost::math::cyl_bessel_j(v, root_lo, pol) < 0); | ||
|  | 
 | ||
|  |                 if(hi_end_of_bracket_is_negative != lo_end_of_bracket_is_negative) | ||
|  |                 { | ||
|  |                   break; | ||
|  |                 } | ||
|  | 
 | ||
|  |                 root_hi = root_lo; | ||
|  | 
 | ||
|  |                 // Decrease the lower end of the bracket using an adaptive algorithm. | ||
|  |                 if(root_lo > 0.5F) | ||
|  |                 { | ||
|  |                   root_lo -= 0.5F; | ||
|  |                 } | ||
|  |                 else | ||
|  |                 { | ||
|  |                   root_lo *= 0.75F; | ||
|  |                 } | ||
|  |               } | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |               root_lo = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(vv_floor, m - 1, pol); | ||
|  |             } | ||
|  | 
 | ||
|  |             // Perform several steps of bisection iteration to refine the guess. | ||
|  |             boost::uintmax_t number_of_iterations(12U); | ||
|  | 
 | ||
|  |             // Do the bisection iteration. | ||
|  |             const boost::math::tuple<T, T> guess_pair = | ||
|  |                boost::math::tools::bisect( | ||
|  |                   boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::function_object_jv<T, Policy>(v, pol), | ||
|  |                   root_lo, | ||
|  |                   root_hi, | ||
|  |                   boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::my_bisection_unreachable_tolerance<T>, | ||
|  |                   number_of_iterations); | ||
|  | 
 | ||
|  |             return (boost::math::get<0>(guess_pair) + boost::math::get<1>(guess_pair)) / 2U; | ||
|  |           } | ||
|  | 
 | ||
|  |           if(m == 1U) | ||
|  |           { | ||
|  |             // Get the initial estimate of the first root. | ||
|  | 
 | ||
|  |             if(v < 2.2F) | ||
|  |             { | ||
|  |               // For small v, use the results of empirical curve fitting. | ||
|  |               // Mathematica(R) session for the coefficients: | ||
|  |               //  Table[{n, BesselJZero[n, 1]}, {n, 0, 22/10, 1/10}] | ||
|  |               //  N[%, 20] | ||
|  |               //  Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n] | ||
|  |               guess = (((((    - T(0.0008342379046010) | ||
|  |                            * v + T(0.007590035637410)) | ||
|  |                            * v - T(0.030640914772013)) | ||
|  |                            * v + T(0.078232088020106)) | ||
|  |                            * v - T(0.169668712590620)) | ||
|  |                            * v + T(1.542187960073750)) | ||
|  |                            * v + T(2.4048359915254634); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |               // For larger v, use the first line of Eqs. 10.21.40 in the NIST Handbook. | ||
|  |               guess = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::equation_nist_10_21_40_a(v); | ||
|  |             } | ||
|  |           } | ||
|  |           else | ||
|  |           { | ||
|  |             if(v < 2.2F) | ||
|  |             { | ||
|  |               // Use Eq. 10.21.19 in the NIST Handbook. | ||
|  |               const T a(((v + T(m * 2U)) - T(0.5)) * boost::math::constants::half_pi<T>()); | ||
|  | 
 | ||
|  |               guess = boost::math::detail::bessel_zero::equation_nist_10_21_19(v, a); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |               // Get an estimate of the m'th root of airy_ai. | ||
|  |               const T airy_ai_root(boost::math::detail::airy_zero::airy_ai_zero_detail::initial_guess<T>(m)); | ||
|  | 
 | ||
|  |               // Use Eq. 9.5.26 in the A&S Handbook. | ||
|  |               guess = boost::math::detail::bessel_zero::equation_as_9_5_26(v, airy_ai_root); | ||
|  |             } | ||
|  |           } | ||
|  | 
 | ||
|  |           return guess; | ||
|  |         } | ||
|  |       } // namespace cyl_bessel_j_zero_detail | ||
|  | 
 | ||
|  |       namespace cyl_neumann_zero_detail | ||
|  |       { | ||
|  |         template<class T> | ||
|  |         T equation_nist_10_21_40_b(const T& v) | ||
|  |         { | ||
|  |           const T v_pow_third(boost::math::cbrt(v)); | ||
|  |           const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third)); | ||
|  | 
 | ||
|  |           return v * (((((                         - T(0.001) | ||
|  |                           * v_pow_minus_two_thirds - T(0.0060)) | ||
|  |                           * v_pow_minus_two_thirds + T(0.01198)) | ||
|  |                           * v_pow_minus_two_thirds + T(0.260351)) | ||
|  |                           * v_pow_minus_two_thirds + T(0.9315768)) | ||
|  |                           * v_pow_minus_two_thirds + T(1)); | ||
|  |         } | ||
|  | 
 | ||
|  |         template<class T, class Policy> | ||
|  |         class function_object_yv | ||
|  |         { | ||
|  |         public: | ||
|  |           function_object_yv(const T& v, | ||
|  |                              const Policy& pol) : my_v(v), | ||
|  |                                                   my_pol(pol) { } | ||
|  | 
 | ||
|  |           T operator()(const T& x) const | ||
|  |           { | ||
|  |             return boost::math::cyl_neumann(my_v, x, my_pol); | ||
|  |           } | ||
|  | 
 | ||
|  |         private: | ||
|  |           const T my_v; | ||
|  |           const Policy& my_pol; | ||
|  |           const function_object_yv& operator=(const function_object_yv&); | ||
|  |         }; | ||
|  | 
 | ||
|  |         template<class T, class Policy> | ||
|  |         class function_object_yv_and_yv_prime | ||
|  |         { | ||
|  |         public: | ||
|  |           function_object_yv_and_yv_prime(const T& v, | ||
|  |                                           const Policy& pol) : my_v(v), | ||
|  |                                                                my_pol(pol) { } | ||
|  | 
 | ||
|  |           boost::math::tuple<T, T> operator()(const T& x) const | ||
|  |           { | ||
|  |             const T half_epsilon(boost::math::tools::epsilon<T>() / 2U); | ||
|  | 
 | ||
|  |             const bool order_is_zero = ((my_v > -half_epsilon) && (my_v < +half_epsilon)); | ||
|  | 
 | ||
|  |             // Obtain Yv(x) and Yv'(x). | ||
|  |             // Chris's original code called the Bessel function implementation layer direct,  | ||
|  |             // but that circumvented optimizations for integer-orders.  Call the documented | ||
|  |             // top level functions instead, and let them sort out which implementation to use. | ||
|  |             T y_v; | ||
|  |             T y_v_prime; | ||
|  | 
 | ||
|  |             if(order_is_zero) | ||
|  |             { | ||
|  |               y_v       =  boost::math::cyl_neumann(0, x, my_pol); | ||
|  |               y_v_prime = -boost::math::cyl_neumann(1, x, my_pol); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                       y_v       = boost::math::cyl_neumann(  my_v,      x, my_pol); | ||
|  |               const T y_v_m1     (boost::math::cyl_neumann(T(my_v - 1), x, my_pol)); | ||
|  |                       y_v_prime = y_v_m1 - ((my_v * y_v) / x); | ||
|  |             } | ||
|  | 
 | ||
|  |             // Return a tuple containing both Yv(x) and Yv'(x). | ||
|  |             return boost::math::make_tuple(y_v, y_v_prime); | ||
|  |           } | ||
|  | 
 | ||
|  |         private: | ||
|  |           const T my_v; | ||
|  |           const Policy& my_pol; | ||
|  |           const function_object_yv_and_yv_prime& operator=(const function_object_yv_and_yv_prime&); | ||
|  |         }; | ||
|  | 
 | ||
|  |         template<class T> bool my_bisection_unreachable_tolerance(const T&, const T&) { return false; } | ||
|  | 
 | ||
|  |         template<class T, class Policy> | ||
|  |         T initial_guess(const T& v, const int m, const Policy& pol) | ||
|  |         { | ||
|  |           BOOST_MATH_STD_USING // ADL of std names, needed for floor. | ||
|  | 
 | ||
|  |           // Compute an estimate of the m'th root of cyl_neumann. | ||
|  | 
 | ||
|  |           T guess; | ||
|  | 
 | ||
|  |           // There is special handling for negative order. | ||
|  |           if(v < 0) | ||
|  |           { | ||
|  |             // Create the positive order and extract its positive floor and ceiling integer parts. | ||
|  |             const T vv(-v); | ||
|  |             const T vv_floor(floor(vv)); | ||
|  | 
 | ||
|  |             // The to-be-found root is bracketed by the roots of the | ||
|  |             // Bessel function whose reflected, positive integer order | ||
|  |             // is less than, but nearest to vv. | ||
|  | 
 | ||
|  |             // The special case of negative, half-integer order uses | ||
|  |             // the relation between Yv and spherical Bessel functions | ||
|  |             // in order to obtain the bracket for the root. | ||
|  |             // In these special cases, cyl_neumann(-n/2, x) = sph_bessel_j(+n/2, x) | ||
|  |             // for v = -n/2. | ||
|  | 
 | ||
|  |             T root_hi; | ||
|  |             T root_lo; | ||
|  | 
 | ||
|  |             if(m == 1) | ||
|  |             { | ||
|  |               // The estimate of the first root for negative order is found using | ||
|  |               // an adaptive range-searching algorithm. | ||
|  |               // Take special precautions for the discontinuity at negative, | ||
|  |               // half-integer orders and use different brackets above and below these. | ||
|  |               if(T(vv - vv_floor) < 0.5F) | ||
|  |               { | ||
|  |                 root_hi = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m, pol); | ||
|  |               } | ||
|  |               else | ||
|  |               { | ||
|  |                 root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m, pol); | ||
|  |               } | ||
|  | 
 | ||
|  |               root_lo = T(root_hi - 0.1F); | ||
|  | 
 | ||
|  |               const bool hi_end_of_bracket_is_negative = (boost::math::cyl_neumann(v, root_hi, pol) < 0); | ||
|  | 
 | ||
|  |               while((root_lo > boost::math::tools::epsilon<T>())) | ||
|  |               { | ||
|  |                 const bool lo_end_of_bracket_is_negative = (boost::math::cyl_neumann(v, root_lo, pol) < 0); | ||
|  | 
 | ||
|  |                 if(hi_end_of_bracket_is_negative != lo_end_of_bracket_is_negative) | ||
|  |                 { | ||
|  |                   break; | ||
|  |                 } | ||
|  | 
 | ||
|  |                 root_hi = root_lo; | ||
|  | 
 | ||
|  |                 // Decrease the lower end of the bracket using an adaptive algorithm. | ||
|  |                 if(root_lo > 0.5F) | ||
|  |                 { | ||
|  |                   root_lo -= 0.5F; | ||
|  |                 } | ||
|  |                 else | ||
|  |                 { | ||
|  |                   root_lo *= 0.75F; | ||
|  |                 } | ||
|  |               } | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |               if(T(vv - vv_floor) < 0.5F) | ||
|  |               { | ||
|  |                 root_lo  = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m - 1, pol); | ||
|  |                 root_hi = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m, pol); | ||
|  |                 root_lo += 0.01F; | ||
|  |                 root_hi += 0.01F; | ||
|  |               } | ||
|  |               else | ||
|  |               { | ||
|  |                 root_lo = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m - 1, pol); | ||
|  |                 root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m, pol); | ||
|  |                 root_lo += 0.01F; | ||
|  |                 root_hi += 0.01F; | ||
|  |               } | ||
|  |             } | ||
|  | 
 | ||
|  |             // Perform several steps of bisection iteration to refine the guess. | ||
|  |             boost::uintmax_t number_of_iterations(12U); | ||
|  | 
 | ||
|  |             // Do the bisection iteration. | ||
|  |             const boost::math::tuple<T, T> guess_pair = | ||
|  |                boost::math::tools::bisect( | ||
|  |                   boost::math::detail::bessel_zero::cyl_neumann_zero_detail::function_object_yv<T, Policy>(v, pol), | ||
|  |                   root_lo, | ||
|  |                   root_hi, | ||
|  |                   boost::math::detail::bessel_zero::cyl_neumann_zero_detail::my_bisection_unreachable_tolerance<T>, | ||
|  |                   number_of_iterations); | ||
|  | 
 | ||
|  |             return (boost::math::get<0>(guess_pair) + boost::math::get<1>(guess_pair)) / 2U; | ||
|  |           } | ||
|  | 
 | ||
|  |           if(m == 1U) | ||
|  |           { | ||
|  |             // Get the initial estimate of the first root. | ||
|  | 
 | ||
|  |             if(v < 2.2F) | ||
|  |             { | ||
|  |               // For small v, use the results of empirical curve fitting. | ||
|  |               // Mathematica(R) session for the coefficients: | ||
|  |               //  Table[{n, BesselYZero[n, 1]}, {n, 0, 22/10, 1/10}] | ||
|  |               //  N[%, 20] | ||
|  |               //  Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n] | ||
|  |               guess = (((((    - T(0.0025095909235652) | ||
|  |                            * v + T(0.021291887049053)) | ||
|  |                            * v - T(0.076487785486526)) | ||
|  |                            * v + T(0.159110268115362)) | ||
|  |                            * v - T(0.241681668765196)) | ||
|  |                            * v + T(1.4437846310885244)) | ||
|  |                            * v + T(0.89362115190200490); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |               // For larger v, use the second line of Eqs. 10.21.40 in the NIST Handbook. | ||
|  |               guess = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::equation_nist_10_21_40_b(v); | ||
|  |             } | ||
|  |           } | ||
|  |           else | ||
|  |           { | ||
|  |             if(v < 2.2F) | ||
|  |             { | ||
|  |               // Use Eq. 10.21.19 in the NIST Handbook. | ||
|  |               const T a(((v + T(m * 2U)) - T(1.5)) * boost::math::constants::half_pi<T>()); | ||
|  | 
 | ||
|  |               guess = boost::math::detail::bessel_zero::equation_nist_10_21_19(v, a); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |               // Get an estimate of the m'th root of airy_bi. | ||
|  |               const T airy_bi_root(boost::math::detail::airy_zero::airy_bi_zero_detail::initial_guess<T>(m)); | ||
|  | 
 | ||
|  |               // Use Eq. 9.5.26 in the A&S Handbook. | ||
|  |               guess = boost::math::detail::bessel_zero::equation_as_9_5_26(v, airy_bi_root); | ||
|  |             } | ||
|  |           } | ||
|  | 
 | ||
|  |           return guess; | ||
|  |         } | ||
|  |       } // namespace cyl_neumann_zero_detail | ||
|  |     } // namespace bessel_zero | ||
|  |   } } } // namespace boost::math::detail | ||
|  | 
 | ||
|  | #endif // _BESSEL_JY_ZERO_2013_01_18_HPP_ |