js8call/.svn/pristine/4e/4e5dd5271abb7c74eb5ba31d8436e48341ec241e.svn-base

684 lines
23 KiB
Plaintext
Raw Normal View History

2018-02-08 21:28:33 -05:00
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/unordered/detail/extract_key.hpp>
#include <boost/throw_exception.hpp>
#include <stdexcept>
namespace boost { namespace unordered { namespace detail {
template <typename A, typename T> struct unique_node;
template <typename T> struct ptr_node;
template <typename Types> struct table_impl;
template <typename A, typename T>
struct unique_node :
boost::unordered::detail::value_base<T>
{
typedef typename ::boost::unordered::detail::rebind_wrap<
A, unique_node<A, T> >::type allocator;
typedef typename ::boost::unordered::detail::
allocator_traits<allocator>::pointer node_pointer;
typedef node_pointer link_pointer;
link_pointer next_;
std::size_t hash_;
unique_node() :
next_(),
hash_(0)
{}
void init(node_pointer)
{
}
private:
unique_node& operator=(unique_node const&);
};
template <typename T>
struct ptr_node :
boost::unordered::detail::ptr_bucket
{
typedef T value_type;
typedef boost::unordered::detail::ptr_bucket bucket_base;
typedef ptr_node<T>* node_pointer;
typedef ptr_bucket* link_pointer;
std::size_t hash_;
boost::unordered::detail::value_base<T> value_base_;
ptr_node() :
bucket_base(),
hash_(0)
{}
void init(node_pointer)
{
}
void* address() { return value_base_.address(); }
value_type& value() { return value_base_.value(); }
value_type* value_ptr() { return value_base_.value_ptr(); }
private:
ptr_node& operator=(ptr_node const&);
};
// If the allocator uses raw pointers use ptr_node
// Otherwise use node.
template <typename A, typename T, typename NodePtr, typename BucketPtr>
struct pick_node2
{
typedef boost::unordered::detail::unique_node<A, T> node;
typedef typename boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A, node>::type
>::pointer node_pointer;
typedef boost::unordered::detail::bucket<node_pointer> bucket;
typedef node_pointer link_pointer;
};
template <typename A, typename T>
struct pick_node2<A, T,
boost::unordered::detail::ptr_node<T>*,
boost::unordered::detail::ptr_bucket*>
{
typedef boost::unordered::detail::ptr_node<T> node;
typedef boost::unordered::detail::ptr_bucket bucket;
typedef bucket* link_pointer;
};
template <typename A, typename T>
struct pick_node
{
typedef typename boost::remove_const<T>::type nonconst;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::ptr_node<nonconst> >::type
> tentative_node_traits;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::ptr_bucket >::type
> tentative_bucket_traits;
typedef pick_node2<A, nonconst,
typename tentative_node_traits::pointer,
typename tentative_bucket_traits::pointer> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
};
template <typename Types>
struct table_impl : boost::unordered::detail::table<Types>
{
typedef boost::unordered::detail::table<Types> table;
typedef typename table::value_type value_type;
typedef typename table::bucket bucket;
typedef typename table::policy policy;
typedef typename table::node_pointer node_pointer;
typedef typename table::node_allocator node_allocator;
typedef typename table::node_allocator_traits node_allocator_traits;
typedef typename table::bucket_pointer bucket_pointer;
typedef typename table::link_pointer link_pointer;
typedef typename table::hasher hasher;
typedef typename table::key_equal key_equal;
typedef typename table::key_type key_type;
typedef typename table::node_constructor node_constructor;
typedef typename table::node_tmp node_tmp;
typedef typename table::extractor extractor;
typedef typename table::iterator iterator;
typedef typename table::c_iterator c_iterator;
typedef std::pair<iterator, bool> emplace_return;
// Constructors
table_impl(std::size_t n,
hasher const& hf,
key_equal const& eq,
node_allocator const& a)
: table(n, hf, eq, a)
{}
table_impl(table_impl const& x)
: table(x, node_allocator_traits::
select_on_container_copy_construction(x.node_alloc()))
{
this->init(x);
}
table_impl(table_impl const& x,
node_allocator const& a)
: table(x, a)
{
this->init(x);
}
table_impl(table_impl& x,
boost::unordered::detail::move_tag m)
: table(x, m)
{}
table_impl(table_impl& x,
node_allocator const& a,
boost::unordered::detail::move_tag m)
: table(x, a, m)
{
this->move_init(x);
}
// Node functions.
static inline node_pointer next_node(link_pointer n) {
return static_cast<node_pointer>(n->next_);
}
// Accessors
template <class Key, class Pred>
node_pointer find_node_impl(
std::size_t key_hash,
Key const& k,
Pred const& eq) const
{
std::size_t bucket_index = this->hash_to_bucket(key_hash);
node_pointer n = this->begin(bucket_index);
for (;;)
{
if (!n) return n;
std::size_t node_hash = n->hash_;
if (key_hash == node_hash)
{
if (eq(k, this->get_key(n->value())))
return n;
}
else
{
if (this->hash_to_bucket(node_hash) != bucket_index)
return node_pointer();
}
n = next_node(n);
}
}
std::size_t count(key_type const& k) const
{
return this->find_node(k) ? 1 : 0;
}
value_type& at(key_type const& k) const
{
if (this->size_) {
node_pointer n = this->find_node(k);
if (n) return n->value();
}
boost::throw_exception(
std::out_of_range("Unable to find key in unordered_map."));
}
std::pair<iterator, iterator>
equal_range(key_type const& k) const
{
node_pointer n = this->find_node(k);
return std::make_pair(iterator(n), iterator(n ? next_node(n) : n));
}
// equals
bool equals(table_impl const& other) const
{
if(this->size_ != other.size_) return false;
for(node_pointer n1 = this->begin(); n1; n1 = next_node(n1))
{
node_pointer n2 = other.find_node(other.get_key(n1->value()));
if (!n2 || n1->value() != n2->value())
return false;
}
return true;
}
// Emplace/Insert
inline node_pointer add_node(
node_pointer n,
std::size_t key_hash)
{
n->hash_ = key_hash;
bucket_pointer b = this->get_bucket(this->hash_to_bucket(key_hash));
if (!b->next_)
{
link_pointer start_node = this->get_previous_start();
if (start_node->next_) {
this->get_bucket(this->hash_to_bucket(
next_node(start_node)->hash_)
)->next_ = n;
}
b->next_ = start_node;
n->next_ = start_node->next_;
start_node->next_ = n;
}
else
{
n->next_ = b->next_->next_;
b->next_->next_ = n;
}
++this->size_;
return n;
}
inline node_pointer resize_and_add_node(node_pointer n, std::size_t key_hash)
{
node_tmp b(n, this->node_alloc());
this->reserve_for_insert(this->size_ + 1);
return this->add_node(b.release(), key_hash);
}
value_type& operator[](key_type const& k)
{
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return pos->value();
}
else {
return this->resize_and_add_node(
boost::unordered::detail::func::construct_node_pair(this->node_alloc(), k),
key_hash)->value();
}
}
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
# if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
emplace_return emplace(boost::unordered::detail::emplace_args1<
boost::unordered::detail::please_ignore_this_overload> const&)
{
BOOST_ASSERT(false);
return emplace_return(iterator(), false);
}
iterator emplace_hint(c_iterator,
boost::unordered::detail::emplace_args1<
boost::unordered::detail::please_ignore_this_overload> const&)
{
BOOST_ASSERT(false);
return iterator();
}
# else
emplace_return emplace(
boost::unordered::detail::please_ignore_this_overload const&)
{
BOOST_ASSERT(false);
return emplace_return(iterator(), false);
}
iterator emplace_hint(c_iterator,
boost::unordered::detail::please_ignore_this_overload const&)
{
BOOST_ASSERT(false);
return iterator();
}
# endif
#endif
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
emplace_return emplace(BOOST_UNORDERED_EMPLACE_ARGS)
{
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
return emplace_impl(
extractor::extract(BOOST_UNORDERED_EMPLACE_FORWARD),
BOOST_UNORDERED_EMPLACE_FORWARD);
#else
return emplace_impl(
extractor::extract(args.a0, args.a1),
BOOST_UNORDERED_EMPLACE_FORWARD);
#endif
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace_hint(c_iterator hint,
BOOST_UNORDERED_EMPLACE_ARGS)
{
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
return emplace_hint_impl(hint,
extractor::extract(BOOST_UNORDERED_EMPLACE_FORWARD),
BOOST_UNORDERED_EMPLACE_FORWARD);
#else
return emplace_hint_impl(hint,
extractor::extract(args.a0, args.a1),
BOOST_UNORDERED_EMPLACE_FORWARD);
#endif
}
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <typename A0>
emplace_return emplace(
boost::unordered::detail::emplace_args1<A0> const& args)
{
return emplace_impl(extractor::extract(args.a0), args);
}
template <typename A0>
iterator emplace_hint(c_iterator hint,
boost::unordered::detail::emplace_args1<A0> const& args)
{
return emplace_hint_impl(hint, extractor::extract(args.a0), args);
}
#endif
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace_hint_impl(c_iterator hint, key_type const& k,
BOOST_UNORDERED_EMPLACE_ARGS)
{
if (hint.node_ && this->key_eq()(k, this->get_key(*hint))) {
return iterator(hint.node_);
}
else {
return emplace_impl(k, BOOST_UNORDERED_EMPLACE_FORWARD).first;
}
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
emplace_return emplace_impl(key_type const& k,
BOOST_UNORDERED_EMPLACE_ARGS)
{
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return emplace_return(iterator(pos), false);
}
else {
return emplace_return(
iterator(this->resize_and_add_node(
boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD),
key_hash)),
true);
}
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace_hint_impl(c_iterator hint, no_key,
BOOST_UNORDERED_EMPLACE_ARGS)
{
node_tmp b(
boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD),
this->node_alloc());
key_type const& k = this->get_key(b.node_->value());
if (hint.node_ && this->key_eq()(k, this->get_key(*hint))) {
return iterator(hint.node_);
}
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return iterator(pos);
}
else {
return iterator(this->resize_and_add_node(b.release(), key_hash));
}
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
emplace_return emplace_impl(no_key, BOOST_UNORDERED_EMPLACE_ARGS)
{
node_tmp b(
boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD),
this->node_alloc());
key_type const& k = this->get_key(b.node_->value());
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return emplace_return(iterator(pos), false);
}
else {
return emplace_return(
iterator(this->resize_and_add_node(b.release(), key_hash)),
true);
}
}
////////////////////////////////////////////////////////////////////////
// Insert range methods
//
// if hash function throws, or inserting > 1 element, basic exception
// safety strong otherwise
template <class InputIt>
void insert_range(InputIt i, InputIt j)
{
if(i != j)
return insert_range_impl(extractor::extract(*i), i, j);
}
template <class InputIt>
void insert_range_impl(key_type const& k, InputIt i, InputIt j)
{
insert_range_impl2(k, i, j);
while(++i != j) {
// Note: can't use get_key as '*i' might not be value_type - it
// could be a pair with first_types as key_type without const or
// a different second_type.
//
// TODO: Might be worth storing the value_type instead of the
// key here. Could be more efficient if '*i' is expensive. Could
// be less efficient if copying the full value_type is
// expensive.
insert_range_impl2(extractor::extract(*i), i, j);
}
}
template <class InputIt>
void insert_range_impl2(key_type const& k, InputIt i, InputIt j)
{
// No side effects in this initial code
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (!pos) {
node_tmp b(
boost::unordered::detail::func::construct_node(this->node_alloc(), *i),
this->node_alloc());
if(this->size_ + 1 > this->max_load_)
this->reserve_for_insert(this->size_ +
boost::unordered::detail::insert_size(i, j));
this->add_node(b.release(), key_hash);
}
}
template <class InputIt>
void insert_range_impl(no_key, InputIt i, InputIt j)
{
node_constructor a(this->node_alloc());
do {
if (!a.node_) { a.create_node(); }
boost::unordered::detail::func::call_construct(
a.alloc_, a.node_->value_ptr(), *i);
node_tmp b(a.release(), a.alloc_);
key_type const& k = this->get_key(b.node_->value());
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
a.reclaim(b.release());
}
else {
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
this->reserve_for_insert(this->size_ + 1);
this->add_node(b.release(), key_hash);
}
} while(++i != j);
}
////////////////////////////////////////////////////////////////////////
// Erase
//
// no throw
std::size_t erase_key(key_type const& k)
{
if(!this->size_) return 0;
std::size_t key_hash = this->hash(k);
std::size_t bucket_index = this->hash_to_bucket(key_hash);
link_pointer prev = this->get_previous_start(bucket_index);
if (!prev) return 0;
for (;;)
{
if (!prev->next_) return 0;
std::size_t node_hash = next_node(prev)->hash_;
if (this->hash_to_bucket(node_hash) != bucket_index)
return 0;
if (node_hash == key_hash &&
this->key_eq()(k, this->get_key(
next_node(prev)->value())))
break;
prev = prev->next_;
}
link_pointer end = next_node(prev)->next_;
std::size_t deleted_count = this->delete_nodes(prev, end);
this->fix_bucket(bucket_index, prev);
return deleted_count;
}
iterator erase(c_iterator r)
{
BOOST_ASSERT(r.node_);
node_pointer next = next_node(r.node_);
erase_nodes(r.node_, next);
return iterator(next);
}
iterator erase_range(c_iterator r1, c_iterator r2)
{
if (r1 == r2) return iterator(r2.node_);
erase_nodes(r1.node_, r2.node_);
return iterator(r2.node_);
}
void erase_nodes(node_pointer i, node_pointer j)
{
std::size_t bucket_index = this->hash_to_bucket(i->hash_);
// Find the node before i.
link_pointer prev = this->get_previous_start(bucket_index);
while(prev->next_ != i) prev = prev->next_;
// Delete the nodes.
do {
this->delete_node(prev);
bucket_index = this->fix_bucket(bucket_index, prev);
} while (prev->next_ != j);
}
////////////////////////////////////////////////////////////////////////
// fill_buckets
void copy_buckets(table const& src) {
this->create_buckets(this->bucket_count_);
for(node_pointer n = src.begin(); n; n = next_node(n)) {
this->add_node(
boost::unordered::detail::func::construct_node(
this->node_alloc(), n->value()), n->hash_);
}
}
void move_buckets(table const& src) {
this->create_buckets(this->bucket_count_);
for(node_pointer n = src.begin(); n; n = next_node(n)) {
this->add_node(
boost::unordered::detail::func::construct_node(
this->node_alloc(), boost::move(n->value())), n->hash_);
}
}
void assign_buckets(table const& src)
{
node_holder<node_allocator> holder(*this);
for(node_pointer n = src.begin(); n; n = next_node(n)) {
this->add_node(holder.copy_of(n->value()), n->hash_);
}
}
void move_assign_buckets(table& src)
{
node_holder<node_allocator> holder(*this);
for(node_pointer n = src.begin(); n; n = next_node(n)) {
this->add_node(holder.move_copy_of(n->value()), n->hash_);
}
}
// strong otherwise exception safety
void rehash_impl(std::size_t num_buckets)
{
BOOST_ASSERT(this->buckets_);
this->create_buckets(num_buckets);
link_pointer prev = this->get_previous_start();
while (prev->next_)
prev = place_in_bucket(*this, prev);
}
// Iterate through the nodes placing them in the correct buckets.
// pre: prev->next_ is not null.
static link_pointer place_in_bucket(table& dst, link_pointer prev)
{
node_pointer n = next_node(prev);
bucket_pointer b = dst.get_bucket(dst.hash_to_bucket(n->hash_));
if (!b->next_) {
b->next_ = prev;
return n;
}
else {
prev->next_ = n->next_;
n->next_ = b->next_->next_;
b->next_->next_ = n;
return prev;
}
}
};
}}}
#endif