392 lines
15 KiB
Plaintext
392 lines
15 KiB
Plaintext
|
// Copyright John Maddock 2010.
|
||
|
// Copyright Paul A. Bristow 2010.
|
||
|
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
|
||
|
#define BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
|
||
|
|
||
|
#include <boost/math/distributions/fwd.hpp>
|
||
|
#include <boost/math/special_functions/gamma.hpp> // for incomplete beta.
|
||
|
#include <boost/math/distributions/complement.hpp> // for complements.
|
||
|
#include <boost/math/distributions/detail/common_error_handling.hpp> // for error checks.
|
||
|
#include <boost/math/special_functions/fpclassify.hpp> // for isfinite
|
||
|
|
||
|
// See http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution
|
||
|
// for definitions of this scaled version.
|
||
|
// See http://en.wikipedia.org/wiki/Inverse-chi-square_distribution
|
||
|
// for unscaled version.
|
||
|
|
||
|
// http://reference.wolfram.com/mathematica/ref/InverseChiSquareDistribution.html
|
||
|
// Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource.
|
||
|
// http://mathworld.wolfram.com/InverseChi-SquaredDistribution.html
|
||
|
|
||
|
#include <utility>
|
||
|
|
||
|
namespace boost{ namespace math{
|
||
|
|
||
|
namespace detail
|
||
|
{
|
||
|
template <class RealType, class Policy>
|
||
|
inline bool check_inverse_chi_squared( // Check both distribution parameters.
|
||
|
const char* function,
|
||
|
RealType degrees_of_freedom, // degrees_of_freedom (aka nu).
|
||
|
RealType scale, // scale (aka sigma^2)
|
||
|
RealType* result,
|
||
|
const Policy& pol)
|
||
|
{
|
||
|
return check_scale(function, scale, result, pol)
|
||
|
&& check_df(function, degrees_of_freedom,
|
||
|
result, pol);
|
||
|
} // bool check_inverse_chi_squared
|
||
|
} // namespace detail
|
||
|
|
||
|
template <class RealType = double, class Policy = policies::policy<> >
|
||
|
class inverse_chi_squared_distribution
|
||
|
{
|
||
|
public:
|
||
|
typedef RealType value_type;
|
||
|
typedef Policy policy_type;
|
||
|
|
||
|
inverse_chi_squared_distribution(RealType df, RealType l_scale) : m_df(df), m_scale (l_scale)
|
||
|
{
|
||
|
RealType result;
|
||
|
detail::check_df(
|
||
|
"boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
|
||
|
m_df, &result, Policy())
|
||
|
&& detail::check_scale(
|
||
|
"boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
|
||
|
m_scale, &result, Policy());
|
||
|
} // inverse_chi_squared_distribution constructor
|
||
|
|
||
|
inverse_chi_squared_distribution(RealType df = 1) : m_df(df)
|
||
|
{
|
||
|
RealType result;
|
||
|
m_scale = 1 / m_df ; // Default scale = 1 / degrees of freedom (Wikipedia definition 1).
|
||
|
detail::check_df(
|
||
|
"boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
|
||
|
m_df, &result, Policy());
|
||
|
} // inverse_chi_squared_distribution
|
||
|
|
||
|
RealType degrees_of_freedom()const
|
||
|
{
|
||
|
return m_df; // aka nu
|
||
|
}
|
||
|
RealType scale()const
|
||
|
{
|
||
|
return m_scale; // aka xi
|
||
|
}
|
||
|
|
||
|
// Parameter estimation: NOT implemented yet.
|
||
|
//static RealType find_degrees_of_freedom(
|
||
|
// RealType difference_from_variance,
|
||
|
// RealType alpha,
|
||
|
// RealType beta,
|
||
|
// RealType variance,
|
||
|
// RealType hint = 100);
|
||
|
|
||
|
private:
|
||
|
// Data members:
|
||
|
RealType m_df; // degrees of freedom are treated as a real number.
|
||
|
RealType m_scale; // distribution scale.
|
||
|
|
||
|
}; // class chi_squared_distribution
|
||
|
|
||
|
typedef inverse_chi_squared_distribution<double> inverse_chi_squared;
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline const std::pair<RealType, RealType> range(const inverse_chi_squared_distribution<RealType, Policy>& /*dist*/)
|
||
|
{ // Range of permissible values for random variable x.
|
||
|
using boost::math::tools::max_value;
|
||
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + infinity.
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline const std::pair<RealType, RealType> support(const inverse_chi_squared_distribution<RealType, Policy>& /*dist*/)
|
||
|
{ // Range of supported values for random variable x.
|
||
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
||
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity.
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
RealType pdf(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions.
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
RealType scale = dist.scale();
|
||
|
RealType error_result;
|
||
|
|
||
|
static const char* function = "boost::math::pdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
||
|
|
||
|
if(false == detail::check_inverse_chi_squared
|
||
|
(function, df, scale, &error_result, Policy())
|
||
|
)
|
||
|
{ // Bad distribution.
|
||
|
return error_result;
|
||
|
}
|
||
|
if((x < 0) || !(boost::math::isfinite)(x))
|
||
|
{ // Bad x.
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy());
|
||
|
}
|
||
|
|
||
|
if(x == 0)
|
||
|
{ // Treat as special case.
|
||
|
return 0;
|
||
|
}
|
||
|
// Wikipedia scaled inverse chi sq (df, scale) related to inv gamma (df/2, df * scale /2)
|
||
|
// so use inverse gamma pdf with shape = df/2, scale df * scale /2
|
||
|
// RealType shape = df /2; // inv_gamma shape
|
||
|
// RealType scale = df * scale/2; // inv_gamma scale
|
||
|
// RealType result = gamma_p_derivative(shape, scale / x, Policy()) * scale / (x * x);
|
||
|
RealType result = df * scale/2 / x;
|
||
|
if(result < tools::min_value<RealType>())
|
||
|
return 0; // Random variable is near enough infinite.
|
||
|
result = gamma_p_derivative(df/2, result, Policy()) * df * scale/2;
|
||
|
if(result != 0) // prevent 0 / 0, gamma_p_derivative -> 0 faster than x^2
|
||
|
result /= (x * x);
|
||
|
return result;
|
||
|
} // pdf
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType cdf(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
|
||
|
{
|
||
|
static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
RealType scale = dist.scale();
|
||
|
RealType error_result;
|
||
|
|
||
|
if(false ==
|
||
|
detail::check_inverse_chi_squared(function, df, scale, &error_result, Policy())
|
||
|
)
|
||
|
{ // Bad distribution.
|
||
|
return error_result;
|
||
|
}
|
||
|
if((x < 0) || !(boost::math::isfinite)(x))
|
||
|
{ // Bad x.
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy());
|
||
|
}
|
||
|
if (x == 0)
|
||
|
{ // Treat zero as a special case.
|
||
|
return 0;
|
||
|
}
|
||
|
// RealType shape = df /2; // inv_gamma shape,
|
||
|
// RealType scale = df * scale/2; // inv_gamma scale,
|
||
|
// result = boost::math::gamma_q(shape, scale / x, Policy()); // inverse_gamma code.
|
||
|
return boost::math::gamma_q(df / 2, (df * (scale / 2)) / x, Policy());
|
||
|
} // cdf
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType quantile(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
|
||
|
{
|
||
|
using boost::math::gamma_q_inv;
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
RealType scale = dist.scale();
|
||
|
|
||
|
static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
||
|
// Error check:
|
||
|
RealType error_result;
|
||
|
if(false == detail::check_df(
|
||
|
function, df, &error_result, Policy())
|
||
|
&& detail::check_probability(
|
||
|
function, p, &error_result, Policy()))
|
||
|
{
|
||
|
return error_result;
|
||
|
}
|
||
|
if(false == detail::check_probability(
|
||
|
function, p, &error_result, Policy()))
|
||
|
{
|
||
|
return error_result;
|
||
|
}
|
||
|
// RealType shape = df /2; // inv_gamma shape,
|
||
|
// RealType scale = df * scale/2; // inv_gamma scale,
|
||
|
// result = scale / gamma_q_inv(shape, p, Policy());
|
||
|
RealType result = gamma_q_inv(df /2, p, Policy());
|
||
|
if(result == 0)
|
||
|
return policies::raise_overflow_error<RealType, Policy>(function, "Random variable is infinite.", Policy());
|
||
|
result = df * (scale / 2) / result;
|
||
|
return result;
|
||
|
} // quantile
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType cdf(const complemented2_type<inverse_chi_squared_distribution<RealType, Policy>, RealType>& c)
|
||
|
{
|
||
|
using boost::math::gamma_q_inv;
|
||
|
RealType const& df = c.dist.degrees_of_freedom();
|
||
|
RealType const& scale = c.dist.scale();
|
||
|
RealType const& x = c.param;
|
||
|
static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
||
|
// Error check:
|
||
|
RealType error_result;
|
||
|
if(false == detail::check_df(
|
||
|
function, df, &error_result, Policy()))
|
||
|
{
|
||
|
return error_result;
|
||
|
}
|
||
|
if (x == 0)
|
||
|
{ // Treat zero as a special case.
|
||
|
return 1;
|
||
|
}
|
||
|
if((x < 0) || !(boost::math::isfinite)(x))
|
||
|
{
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function, "inverse Chi Square parameter was %1%, but must be > 0 !", x, Policy());
|
||
|
}
|
||
|
// RealType shape = df /2; // inv_gamma shape,
|
||
|
// RealType scale = df * scale/2; // inv_gamma scale,
|
||
|
// result = gamma_p(shape, scale/c.param, Policy()); use inv_gamma.
|
||
|
|
||
|
return gamma_p(df / 2, (df * scale/2) / x, Policy()); // OK
|
||
|
} // cdf(complemented
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType quantile(const complemented2_type<inverse_chi_squared_distribution<RealType, Policy>, RealType>& c)
|
||
|
{
|
||
|
using boost::math::gamma_q_inv;
|
||
|
|
||
|
RealType const& df = c.dist.degrees_of_freedom();
|
||
|
RealType const& scale = c.dist.scale();
|
||
|
RealType const& q = c.param;
|
||
|
static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
||
|
// Error check:
|
||
|
RealType error_result;
|
||
|
if(false == detail::check_df(function, df, &error_result, Policy()))
|
||
|
{
|
||
|
return error_result;
|
||
|
}
|
||
|
if(false == detail::check_probability(function, q, &error_result, Policy()))
|
||
|
{
|
||
|
return error_result;
|
||
|
}
|
||
|
// RealType shape = df /2; // inv_gamma shape,
|
||
|
// RealType scale = df * scale/2; // inv_gamma scale,
|
||
|
// result = scale / gamma_p_inv(shape, q, Policy()); // using inv_gamma.
|
||
|
RealType result = gamma_p_inv(df/2, q, Policy());
|
||
|
if(result == 0)
|
||
|
return policies::raise_overflow_error<RealType, Policy>(function, "Random variable is infinite.", Policy());
|
||
|
result = (df * scale / 2) / result;
|
||
|
return result;
|
||
|
} // quantile(const complement
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType mean(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
{ // Mean of inverse Chi-Squared distribution.
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
RealType scale = dist.scale();
|
||
|
|
||
|
static const char* function = "boost::math::mean(const inverse_chi_squared_distribution<%1%>&)";
|
||
|
if(df <= 2)
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"inverse Chi-Squared distribution only has a mode for degrees of freedom > 2, but got degrees of freedom = %1%.",
|
||
|
df, Policy());
|
||
|
return (df * scale) / (df - 2);
|
||
|
} // mean
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType variance(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
{ // Variance of inverse Chi-Squared distribution.
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
RealType scale = dist.scale();
|
||
|
static const char* function = "boost::math::variance(const inverse_chi_squared_distribution<%1%>&)";
|
||
|
if(df <= 4)
|
||
|
{
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"inverse Chi-Squared distribution only has a variance for degrees of freedom > 4, but got degrees of freedom = %1%.",
|
||
|
df, Policy());
|
||
|
}
|
||
|
return 2 * df * df * scale * scale / ((df - 2)*(df - 2) * (df - 4));
|
||
|
} // variance
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType mode(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
{ // mode is not defined in Mathematica.
|
||
|
// See Discussion section http://en.wikipedia.org/wiki/Talk:Scaled-inverse-chi-square_distribution
|
||
|
// for origin of the formula used below.
|
||
|
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
RealType scale = dist.scale();
|
||
|
static const char* function = "boost::math::mode(const inverse_chi_squared_distribution<%1%>&)";
|
||
|
if(df < 0)
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"inverse Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.",
|
||
|
df, Policy());
|
||
|
return (df * scale) / (df + 2);
|
||
|
}
|
||
|
|
||
|
//template <class RealType, class Policy>
|
||
|
//inline RealType median(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
//{ // Median is given by Quantile[dist, 1/2]
|
||
|
// RealType df = dist.degrees_of_freedom();
|
||
|
// if(df <= 1)
|
||
|
// return tools::domain_error<RealType>(
|
||
|
// BOOST_CURRENT_FUNCTION,
|
||
|
// "The inverse_Chi-Squared distribution only has a median for degrees of freedom >= 0, but got degrees of freedom = %1%.",
|
||
|
// df);
|
||
|
// return df;
|
||
|
//}
|
||
|
// Now implemented via quantile(half) in derived accessors.
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType skewness(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // For ADL
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
static const char* function = "boost::math::skewness(const inverse_chi_squared_distribution<%1%>&)";
|
||
|
if(df <= 6)
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"inverse Chi-Squared distribution only has a skewness for degrees of freedom > 6, but got degrees of freedom = %1%.",
|
||
|
df, Policy());
|
||
|
|
||
|
return 4 * sqrt (2 * (df - 4)) / (df - 6); // Not a function of scale.
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType kurtosis(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)";
|
||
|
if(df <= 8)
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"inverse Chi-Squared distribution only has a kurtosis for degrees of freedom > 8, but got degrees of freedom = %1%.",
|
||
|
df, Policy());
|
||
|
|
||
|
return kurtosis_excess(dist) + 3;
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType kurtosis_excess(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
RealType df = dist.degrees_of_freedom();
|
||
|
static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)";
|
||
|
if(df <= 8)
|
||
|
return policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"inverse Chi-Squared distribution only has a kurtosis excess for degrees of freedom > 8, but got degrees of freedom = %1%.",
|
||
|
df, Policy());
|
||
|
|
||
|
return 12 * (5 * df - 22) / ((df - 6 )*(df - 8)); // Not a function of scale.
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Parameter estimation comes last:
|
||
|
//
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace boost
|
||
|
|
||
|
// This include must be at the end, *after* the accessors
|
||
|
// for this distribution have been defined, in order to
|
||
|
// keep compilers that support two-phase lookup happy.
|
||
|
#include <boost/math/distributions/detail/derived_accessors.hpp>
|
||
|
|
||
|
#endif // BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
|