55 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
|   | subroutine js8_downsample(dd,newdat,f0,c1)
 | ||
|  | 
 | ||
|  |   ! Downconvert to complex data sampled at 200 Hz ==> 32 samples/symbol
 | ||
|  | 
 | ||
|  |   !include 'js8_params.f90'
 | ||
|  | 
 | ||
|  |   parameter (NDFFT1=NSPS*NDD, NDFFT2=NDFFT1/NDOWN) ! Downconverted FFT Size - 192000/60 = 3200
 | ||
|  |   
 | ||
|  |   logical newdat,first
 | ||
|  | 
 | ||
|  |   complex c1(0:NDFFT2-1)
 | ||
|  |   complex cx(0:NDFFT1/2)
 | ||
|  |   real dd(NMAX),x(NDFFT1),taper(0:NDD)
 | ||
|  |   equivalence (x,cx)
 | ||
|  |   data first/.true./
 | ||
|  |   save cx,first,taper
 | ||
|  | 
 | ||
|  |   if(first) then
 | ||
|  |      pi=4.0*atan(1.0)
 | ||
|  |      do i=0,NDD
 | ||
|  |        taper(i)=0.5*(1.0+cos(i*pi/NDD))
 | ||
|  |      enddo
 | ||
|  |      first=.false.
 | ||
|  |   endif
 | ||
|  |   if(newdat) then
 | ||
|  |      ! Data in dd have changed, recompute the long FFT
 | ||
|  |      x(1:NMAX)=dd
 | ||
|  |      x(NMAX+1:NDFFT1)=0.                       !Zero-pad the x array
 | ||
|  |      call four2a(cx,NDFFT1,1,-1,0)             !r2c FFT to freq domain
 | ||
|  |      newdat=.false.
 | ||
|  |   endif
 | ||
|  | 
 | ||
|  |   df=12000.0/NDFFT1
 | ||
|  |   baud=12000.0/NSPS
 | ||
|  |   i0=nint(f0/df)
 | ||
|  |   ft=f0+8.5*baud
 | ||
|  |   it=min(nint(ft/df),NDFFT1/2)
 | ||
|  |   fb=f0-1.5*baud
 | ||
|  |   ib=max(1,nint(fb/df))
 | ||
|  |   k=0
 | ||
|  |   c1=0.
 | ||
|  |   do i=ib,it
 | ||
|  |    c1(k)=cx(i)
 | ||
|  |    k=k+1
 | ||
|  |   enddo
 | ||
|  |   c1(0:NDD)=c1(0:NDD)*taper(NDD:0:-1)
 | ||
|  |   c1(k-1-NDD:k-1)=c1(k-1-NDD:k-1)*taper
 | ||
|  |   c1=cshift(c1,i0-ib)
 | ||
|  |   call four2a(c1,NDFFT2,1,1,1)            !c2c FFT back to time domain
 | ||
|  |   fac=1.0/sqrt(float(NDFFT1)*NDFFT2)
 | ||
|  |   c1=fac*c1
 | ||
|  | 
 | ||
|  |   return
 | ||
|  | end subroutine js8_downsample
 |