550 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			550 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright John Maddock 2007. | ||
|  | //  Copyright Paul A. Bristow 2007 | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP | ||
|  | #define BOOST_MATH_SF_DETAIL_INV_T_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/cbrt.hpp> | ||
|  | #include <boost/math/special_functions/round.hpp> | ||
|  | #include <boost/math/special_functions/trunc.hpp> | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ namespace detail{ | ||
|  | 
 | ||
|  | // | ||
|  | // The main method used is due to Hill: | ||
|  | // | ||
|  | // G. W. Hill, Algorithm 396, Student's t-Quantiles, | ||
|  | // Communications of the ACM, 13(10): 619-620, Oct., 1970. | ||
|  | // | ||
|  | template <class T, class Policy> | ||
|  | T inverse_students_t_hill(T ndf, T u, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    BOOST_ASSERT(u <= 0.5); | ||
|  | 
 | ||
|  |    T a, b, c, d, q, x, y; | ||
|  | 
 | ||
|  |    if (ndf > 1e20f) | ||
|  |       return -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>(); | ||
|  | 
 | ||
|  |    a = 1 / (ndf - 0.5f); | ||
|  |    b = 48 / (a * a); | ||
|  |    c = ((20700 * a / b - 98) * a - 16) * a + 96.36f; | ||
|  |    d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi<T>() / 2) * ndf; | ||
|  |    y = pow(d * 2 * u, 2 / ndf); | ||
|  | 
 | ||
|  |    if (y > (0.05f + a)) | ||
|  |    { | ||
|  |       // | ||
|  |       // Asymptotic inverse expansion about normal: | ||
|  |       // | ||
|  |       x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>(); | ||
|  |       y = x * x; | ||
|  | 
 | ||
|  |       if (ndf < 5) | ||
|  |          c += 0.3f * (ndf - 4.5f) * (x + 0.6f); | ||
|  |       c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b; | ||
|  |       y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x; | ||
|  |       y = boost::math::expm1(a * y * y, pol); | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       y = static_cast<T>(((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f) | ||
|  |               * (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1) | ||
|  |               * (ndf + 1) / (ndf + 2) + 1 / y); | ||
|  |    } | ||
|  |    q = sqrt(ndf * y); | ||
|  | 
 | ||
|  |    return -q; | ||
|  | } | ||
|  | // | ||
|  | // Tail and body series are due to Shaw: | ||
|  | // | ||
|  | // www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf | ||
|  | // | ||
|  | // Shaw, W.T., 2006, "Sampling Student's T distribution - use of | ||
|  | // the inverse cumulative distribution function." | ||
|  | // Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006 | ||
|  | // | ||
|  | template <class T, class Policy> | ||
|  | T inverse_students_t_tail_series(T df, T v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    // Tail series expansion, see section 6 of Shaw's paper. | ||
|  |    // w is calculated using Eq 60: | ||
|  |    T w = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol) | ||
|  |       * sqrt(df * constants::pi<T>()) * v; | ||
|  |    // define some variables: | ||
|  |    T np2 = df + 2; | ||
|  |    T np4 = df + 4; | ||
|  |    T np6 = df + 6; | ||
|  |    // | ||
|  |    // Calculate the coefficients d(k), these depend only on the | ||
|  |    // number of degrees of freedom df, so at least in theory | ||
|  |    // we could tabulate these for fixed df, see p15 of Shaw: | ||
|  |    // | ||
|  |    T d[7] = { 1, }; | ||
|  |    d[1] = -(df + 1) / (2 * np2); | ||
|  |    np2 *= (df + 2); | ||
|  |    d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4); | ||
|  |    np2 *= df + 2; | ||
|  |    d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6); | ||
|  |    np2 *= (df + 2); | ||
|  |    np4 *= (df + 4); | ||
|  |    d[4] = -df * (df + 1) * (df + 7) * | ||
|  |       ( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 ) | ||
|  |       / (384 * np2 * np4 * np6 * (df + 8)); | ||
|  |    np2 *= (df + 2); | ||
|  |    d[5] = -df * (df + 1) * (df + 3) * (df + 9) | ||
|  |             * (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128) | ||
|  |             / (1280 * np2 * np4 * np6 * (df + 8) * (df + 10)); | ||
|  |    np2 *= (df + 2); | ||
|  |    np4 *= (df + 4); | ||
|  |    np6 *= (df + 6); | ||
|  |    d[6] = -df * (df + 1) * (df + 11) | ||
|  |             * ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736) | ||
|  |             / (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12)); | ||
|  |    // | ||
|  |    // Now bring everthing together to provide the result, | ||
|  |    // this is Eq 62 of Shaw: | ||
|  |    // | ||
|  |    T rn = sqrt(df); | ||
|  |    T div = pow(rn * w, 1 / df); | ||
|  |    T power = div * div; | ||
|  |    T result = tools::evaluate_polynomial<7, T, T>(d, power); | ||
|  |    result *= rn; | ||
|  |    result /= div; | ||
|  |    return -result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T inverse_students_t_body_series(T df, T u, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    // | ||
|  |    // Body series for small N: | ||
|  |    // | ||
|  |    // Start with Eq 56 of Shaw: | ||
|  |    // | ||
|  |    T v = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol) | ||
|  |       * sqrt(df * constants::pi<T>()) * (u - constants::half<T>()); | ||
|  |    // | ||
|  |    // Workspace for the polynomial coefficients: | ||
|  |    // | ||
|  |    T c[11] = { 0, 1, }; | ||
|  |    // | ||
|  |    // Figure out what the coefficients are, note these depend | ||
|  |    // only on the degrees of freedom (Eq 57 of Shaw): | ||
|  |    // | ||
|  |    T in = 1 / df; | ||
|  |    c[2] = static_cast<T>(0.16666666666666666667 + 0.16666666666666666667 * in); | ||
|  |    c[3] = static_cast<T>((0.0083333333333333333333 * in | ||
|  |       + 0.066666666666666666667) * in  | ||
|  |       + 0.058333333333333333333); | ||
|  |    c[4] = static_cast<T>(((0.00019841269841269841270 * in | ||
|  |       + 0.0017857142857142857143) * in  | ||
|  |       + 0.026785714285714285714) * in  | ||
|  |       + 0.025198412698412698413); | ||
|  |    c[5] = static_cast<T>((((2.7557319223985890653e-6 * in | ||
|  |       + 0.00037477954144620811287) * in  | ||
|  |       - 0.0011078042328042328042) * in  | ||
|  |       + 0.010559964726631393298) * in  | ||
|  |       + 0.012039792768959435626); | ||
|  |    c[6] = static_cast<T>(((((2.5052108385441718775e-8 * in | ||
|  |       - 0.000062705427288760622094) * in  | ||
|  |       + 0.00059458674042007375341) * in  | ||
|  |       - 0.0016095979637646304313) * in  | ||
|  |       + 0.0061039211560044893378) * in  | ||
|  |       + 0.0038370059724226390893); | ||
|  |    c[7] = static_cast<T>((((((1.6059043836821614599e-10 * in | ||
|  |       + 0.000015401265401265401265) * in  | ||
|  |       - 0.00016376804137220803887) * in | ||
|  |       + 0.00069084207973096861986) * in  | ||
|  |       - 0.0012579159844784844785) * in  | ||
|  |       + 0.0010898206731540064873) * in  | ||
|  |       + 0.0032177478835464946576); | ||
|  |    c[8] = static_cast<T>(((((((7.6471637318198164759e-13 * in | ||
|  |       - 3.9851014346715404916e-6) * in | ||
|  |       + 0.000049255746366361445727) * in | ||
|  |       - 0.00024947258047043099953) * in  | ||
|  |       + 0.00064513046951456342991) * in | ||
|  |       - 0.00076245135440323932387) * in | ||
|  |       + 0.000033530976880017885309) * in  | ||
|  |       + 0.0017438262298340009980); | ||
|  |    c[9] = static_cast<T>((((((((2.8114572543455207632e-15 * in | ||
|  |       + 1.0914179173496789432e-6) * in | ||
|  |       - 0.000015303004486655377567) * in | ||
|  |       + 0.000090867107935219902229) * in | ||
|  |       - 0.00029133414466938067350) * in | ||
|  |       + 0.00051406605788341121363) * in | ||
|  |       - 0.00036307660358786885787) * in | ||
|  |       - 0.00031101086326318780412) * in  | ||
|  |       + 0.00096472747321388644237); | ||
|  |    c[10] = static_cast<T>(((((((((8.2206352466243297170e-18 * in | ||
|  |       - 3.1239569599829868045e-7) * in | ||
|  |       + 4.8903045291975346210e-6) * in | ||
|  |       - 0.000033202652391372058698) * in | ||
|  |       + 0.00012645437628698076975) * in | ||
|  |       - 0.00028690924218514613987) * in | ||
|  |       + 0.00035764655430568632777) * in | ||
|  |       - 0.00010230378073700412687) * in | ||
|  |       - 0.00036942667800009661203) * in | ||
|  |       + 0.00054229262813129686486); | ||
|  |    // | ||
|  |    // The result is then a polynomial in v (see Eq 56 of Shaw): | ||
|  |    // | ||
|  |    return tools::evaluate_odd_polynomial<11, T, T>(c, v); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = 0) | ||
|  | { | ||
|  |    // | ||
|  |    // df = number of degrees of freedom. | ||
|  |    // u = probablity. | ||
|  |    // v = 1 - u. | ||
|  |    // l = lanczos type to use. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    bool invert = false; | ||
|  |    T result = 0; | ||
|  |    if(pexact) | ||
|  |       *pexact = false; | ||
|  |    if(u > v) | ||
|  |    { | ||
|  |       // function is symmetric, invert it: | ||
|  |       std::swap(u, v); | ||
|  |       invert = true; | ||
|  |    } | ||
|  |    if((floor(df) == df) && (df < 20)) | ||
|  |    { | ||
|  |       // | ||
|  |       // we have integer degrees of freedom, try for the special | ||
|  |       // cases first: | ||
|  |       // | ||
|  |       T tolerance = ldexp(1.0f, (2 * policies::digits<T, Policy>()) / 3); | ||
|  | 
 | ||
|  |       switch(itrunc(df, Policy())) | ||
|  |       { | ||
|  |       case 1: | ||
|  |          { | ||
|  |             // | ||
|  |             // df = 1 is the same as the Cauchy distribution, see | ||
|  |             // Shaw Eq 35: | ||
|  |             // | ||
|  |             if(u == 0.5) | ||
|  |                result = 0; | ||
|  |             else | ||
|  |                result = -cos(constants::pi<T>() * u) / sin(constants::pi<T>() * u); | ||
|  |             if(pexact) | ||
|  |                *pexact = true; | ||
|  |             break; | ||
|  |          } | ||
|  |       case 2: | ||
|  |          { | ||
|  |             // | ||
|  |             // df = 2 has an exact result, see Shaw Eq 36: | ||
|  |             // | ||
|  |             result =(2 * u - 1) / sqrt(2 * u * v); | ||
|  |             if(pexact) | ||
|  |                *pexact = true; | ||
|  |             break; | ||
|  |          } | ||
|  |       case 4: | ||
|  |          { | ||
|  |             // | ||
|  |             // df = 4 has an exact result, see Shaw Eq 38 & 39: | ||
|  |             // | ||
|  |             T alpha = 4 * u * v; | ||
|  |             T root_alpha = sqrt(alpha); | ||
|  |             T r = 4 * cos(acos(root_alpha) / 3) / root_alpha; | ||
|  |             T x = sqrt(r - 4); | ||
|  |             result = u - 0.5f < 0 ? (T)-x : x; | ||
|  |             if(pexact) | ||
|  |                *pexact = true; | ||
|  |             break; | ||
|  |          } | ||
|  |       case 6: | ||
|  |          { | ||
|  |             // | ||
|  |             // We get numeric overflow in this area: | ||
|  |             // | ||
|  |             if(u < 1e-150) | ||
|  |                return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol); | ||
|  |             // | ||
|  |             // Newton-Raphson iteration of a polynomial case, | ||
|  |             // choice of seed value is taken from Shaw's online | ||
|  |             // supplement: | ||
|  |             // | ||
|  |             T a = 4 * (u - u * u);//1 - 4 * (u - 0.5f) * (u - 0.5f); | ||
|  |             T b = boost::math::cbrt(a); | ||
|  |             static const T c = static_cast<T>(0.85498797333834849467655443627193); | ||
|  |             T p = 6 * (1 + c * (1 / b - 1)); | ||
|  |             T p0; | ||
|  |             do{ | ||
|  |                T p2 = p * p; | ||
|  |                T p4 = p2 * p2; | ||
|  |                T p5 = p * p4; | ||
|  |                p0 = p; | ||
|  |                // next term is given by Eq 41: | ||
|  |                p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243)); | ||
|  |             }while(fabs((p - p0) / p) > tolerance); | ||
|  |             // | ||
|  |             // Use Eq 45 to extract the result: | ||
|  |             // | ||
|  |             p = sqrt(p - df); | ||
|  |             result = (u - 0.5f) < 0 ? (T)-p : p; | ||
|  |             break; | ||
|  |          } | ||
|  | #if 0 | ||
|  |          // | ||
|  |          // These are Shaw's "exact" but iterative solutions | ||
|  |          // for even df, the numerical accuracy of these is | ||
|  |          // rather less than Hill's method, so these are disabled | ||
|  |          // for now, which is a shame because they are reasonably | ||
|  |          // quick to evaluate... | ||
|  |          // | ||
|  |       case 8: | ||
|  |          { | ||
|  |             // | ||
|  |             // Newton-Raphson iteration of a polynomial case, | ||
|  |             // choice of seed value is taken from Shaw's online | ||
|  |             // supplement: | ||
|  |             // | ||
|  |             static const T c8 = 0.85994765706259820318168359251872L; | ||
|  |             T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); | ||
|  |             T b = pow(a, T(1) / 4); | ||
|  |             T p = 8 * (1 + c8 * (1 / b - 1)); | ||
|  |             T p0 = p; | ||
|  |             do{ | ||
|  |                T p5 = p * p; | ||
|  |                p5 *= p5 * p; | ||
|  |                p0 = p; | ||
|  |                // Next term is given by Eq 42: | ||
|  |                p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7; | ||
|  |             }while(fabs((p - p0) / p) > tolerance); | ||
|  |             // | ||
|  |             // Use Eq 45 to extract the result: | ||
|  |             // | ||
|  |             p = sqrt(p - df); | ||
|  |             result = (u - 0.5f) < 0 ? -p : p; | ||
|  |             break; | ||
|  |          } | ||
|  |       case 10: | ||
|  |          { | ||
|  |             // | ||
|  |             // Newton-Raphson iteration of a polynomial case, | ||
|  |             // choice of seed value is taken from Shaw's online | ||
|  |             // supplement: | ||
|  |             // | ||
|  |             static const T c10 = 0.86781292867813396759105692122285L; | ||
|  |             T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); | ||
|  |             T b = pow(a, T(1) / 5); | ||
|  |             T p = 10 * (1 + c10 * (1 / b - 1)); | ||
|  |             T p0; | ||
|  |             do{ | ||
|  |                T p6 = p * p; | ||
|  |                p6 *= p6 * p6; | ||
|  |                p0 = p; | ||
|  |                // Next term given by Eq 43: | ||
|  |                p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) / | ||
|  |                   (9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6)))); | ||
|  |             }while(fabs((p - p0) / p) > tolerance); | ||
|  |             // | ||
|  |             // Use Eq 45 to extract the result: | ||
|  |             // | ||
|  |             p = sqrt(p - df); | ||
|  |             result = (u - 0.5f) < 0 ? -p : p; | ||
|  |             break; | ||
|  |          } | ||
|  | #endif | ||
|  |       default: | ||
|  |          goto calculate_real; | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  | calculate_real: | ||
|  |       if(df > 0x10000000) | ||
|  |       { | ||
|  |          result = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>(); | ||
|  |          if((pexact) && (df >= 1e20)) | ||
|  |             *pexact = true; | ||
|  |       } | ||
|  |       else if(df < 3) | ||
|  |       { | ||
|  |          // | ||
|  |          // Use a roughly linear scheme to choose between Shaw's | ||
|  |          // tail series and body series: | ||
|  |          // | ||
|  |          T crossover = 0.2742f - df * 0.0242143f; | ||
|  |          if(u > crossover) | ||
|  |          { | ||
|  |             result = boost::math::detail::inverse_students_t_body_series(df, u, pol); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); | ||
|  |          } | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // | ||
|  |          // Use Hill's method except in the exteme tails | ||
|  |          // where we use Shaw's tail series. | ||
|  |          // The crossover point is roughly exponential in -df: | ||
|  |          // | ||
|  |          T crossover = ldexp(1.0f, iround(T(df / -0.654f), typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type())); | ||
|  |          if(u > crossover) | ||
|  |          { | ||
|  |             result = boost::math::detail::inverse_students_t_hill(df, u, pol); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); | ||
|  |          } | ||
|  |       } | ||
|  |    } | ||
|  |    return invert ? (T)-result : result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline T find_ibeta_inv_from_t_dist(T a, T p, T /*q*/, T* py, const Policy& pol) | ||
|  | { | ||
|  |    T u = p / 2; | ||
|  |    T v = 1 - u; | ||
|  |    T df = a * 2; | ||
|  |    T t = boost::math::detail::inverse_students_t(df, u, v, pol); | ||
|  |    *py = t * t / (df + t * t); | ||
|  |    return df / (df + t * t); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::false_*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    // | ||
|  |    // Need to use inverse incomplete beta to get | ||
|  |    // required precision so not so fast: | ||
|  |    // | ||
|  |    T probability = (p > 0.5) ? 1 - p : p; | ||
|  |    T t, x, y(0); | ||
|  |    x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol); | ||
|  |    if(df * y > tools::max_value<T>() * x) | ||
|  |       t = policies::raise_overflow_error<T>("boost::math::students_t_quantile<%1%>(%1%,%1%)", 0, pol); | ||
|  |    else | ||
|  |       t = sqrt(df * y / x); | ||
|  |    // | ||
|  |    // Figure out sign based on the size of p: | ||
|  |    // | ||
|  |    if(p < 0.5) | ||
|  |       t = -t; | ||
|  |    return t; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::true_*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    bool invert = false; | ||
|  |    if((df < 2) && (floor(df) != df)) | ||
|  |       return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast<mpl::false_*>(0)); | ||
|  |    if(p > 0.5) | ||
|  |    { | ||
|  |       p = 1 - p; | ||
|  |       invert = true; | ||
|  |    } | ||
|  |    // | ||
|  |    // Get an estimate of the result: | ||
|  |    // | ||
|  |    bool exact; | ||
|  |    T t = inverse_students_t(df, p, T(1-p), pol, &exact); | ||
|  |    if((t == 0) || exact) | ||
|  |       return invert ? -t : t; // can't do better! | ||
|  |    // | ||
|  |    // Change variables to inverse incomplete beta: | ||
|  |    // | ||
|  |    T t2 = t * t; | ||
|  |    T xb = df / (df + t2); | ||
|  |    T y = t2 / (df + t2); | ||
|  |    T a = df / 2; | ||
|  |    // | ||
|  |    // t can be so large that x underflows, | ||
|  |    // just return our estimate in that case: | ||
|  |    // | ||
|  |    if(xb == 0) | ||
|  |       return t; | ||
|  |    // | ||
|  |    // Get incomplete beta and it's derivative: | ||
|  |    // | ||
|  |    T f1; | ||
|  |    T f0 = xb < y ? ibeta_imp(a, constants::half<T>(), xb, pol, false, true, &f1) | ||
|  |       : ibeta_imp(constants::half<T>(), a, y, pol, true, true, &f1); | ||
|  | 
 | ||
|  |    // Get cdf from incomplete beta result: | ||
|  |    T p0 = f0 / 2  - p; | ||
|  |    // Get pdf from derivative: | ||
|  |    T p1 = f1 * sqrt(y * xb * xb * xb / df); | ||
|  |    // | ||
|  |    // Second derivative divided by p1: | ||
|  |    // | ||
|  |    // yacas gives: | ||
|  |    // | ||
|  |    // In> PrettyForm(Simplify(D(t) (1 + t^2/v) ^ (-(v+1)/2))) | ||
|  |    // | ||
|  |    //  |                        | v + 1     |     | | ||
|  |    //  |                       -| ----- + 1 |     | | ||
|  |    //  |                        |   2       |     | | ||
|  |    // -|             |  2     |                   | | ||
|  |    //  |             | t      |                   | | ||
|  |    //  |             | -- + 1 |                   | | ||
|  |    //  | ( v + 1 ) * | v      |               * t | | ||
|  |    // --------------------------------------------- | ||
|  |    //                       v | ||
|  |    // | ||
|  |    // Which after some manipulation is: | ||
|  |    // | ||
|  |    // -p1 * t * (df + 1) / (t^2 + df) | ||
|  |    // | ||
|  |    T p2 = t * (df + 1) / (t * t + df); | ||
|  |    // Halley step: | ||
|  |    t = fabs(t); | ||
|  |    t += p0 / (p1 + p0 * p2 / 2); | ||
|  |    return !invert ? -t : t; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline T fast_students_t_quantile(T df, T p, const Policy& pol) | ||
|  | { | ||
|  |    typedef typename policies::evaluation<T, Policy>::type value_type; | ||
|  |    typedef typename policies::normalise< | ||
|  |       Policy,  | ||
|  |       policies::promote_float<false>,  | ||
|  |       policies::promote_double<false>,  | ||
|  |       policies::discrete_quantile<>, | ||
|  |       policies::assert_undefined<> >::type forwarding_policy; | ||
|  | 
 | ||
|  |    typedef mpl::bool_< | ||
|  |       (std::numeric_limits<T>::digits <= 53) | ||
|  |        && | ||
|  |       (std::numeric_limits<T>::is_specialized) | ||
|  |        && | ||
|  |       (std::numeric_limits<T>::radix == 2) | ||
|  |    > tag_type; | ||
|  |    return policies::checked_narrowing_cast<T, forwarding_policy>(fast_students_t_quantile_imp(static_cast<value_type>(df), static_cast<value_type>(p), pol, static_cast<tag_type*>(0)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)"); | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_SF_DETAIL_INV_T_HPP | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |