517 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			517 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | // boost\math\distributions\geometric.hpp | ||
|  | 
 | ||
|  | // Copyright John Maddock 2010. | ||
|  | // Copyright Paul A. Bristow 2010. | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the | ||
|  | // Boost Software License, Version 1.0. | ||
|  | // (See accompanying file LICENSE_1_0.txt | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | // geometric distribution is a discrete probability distribution. | ||
|  | // It expresses the probability distribution of the number (k) of | ||
|  | // events, occurrences, failures or arrivals before the first success. | ||
|  | // supported on the set {0, 1, 2, 3...} | ||
|  | 
 | ||
|  | // Note that the set includes zero (unlike some definitions that start at one). | ||
|  | 
 | ||
|  | // The random variate k is the number of events, occurrences or arrivals. | ||
|  | // k argument may be integral, signed, or unsigned, or floating point. | ||
|  | // If necessary, it has already been promoted from an integral type. | ||
|  | 
 | ||
|  | // Note that the geometric distribution | ||
|  | // (like others including the binomial, geometric & Bernoulli) | ||
|  | // is strictly defined as a discrete function: | ||
|  | // only integral values of k are envisaged. | ||
|  | // However because the method of calculation uses a continuous gamma function, | ||
|  | // it is convenient to treat it as if a continous function, | ||
|  | // and permit non-integral values of k. | ||
|  | // To enforce the strict mathematical model, users should use floor or ceil functions | ||
|  | // on k outside this function to ensure that k is integral. | ||
|  | 
 | ||
|  | // See http://en.wikipedia.org/wiki/geometric_distribution | ||
|  | // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html | ||
|  | // http://mathworld.wolfram.com/GeometricDistribution.html | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP | ||
|  | #define BOOST_MATH_SPECIAL_GEOMETRIC_HPP | ||
|  | 
 | ||
|  | #include <boost/math/distributions/fwd.hpp> | ||
|  | #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). | ||
|  | #include <boost/math/distributions/complement.hpp> // complement. | ||
|  | #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. | ||
|  | #include <boost/math/special_functions/fpclassify.hpp> // isnan. | ||
|  | #include <boost/math/tools/roots.hpp> // for root finding. | ||
|  | #include <boost/math/distributions/detail/inv_discrete_quantile.hpp> | ||
|  | 
 | ||
|  | #include <boost/type_traits/is_floating_point.hpp> | ||
|  | #include <boost/type_traits/is_integral.hpp> | ||
|  | #include <boost/type_traits/is_same.hpp> | ||
|  | #include <boost/mpl/if.hpp> | ||
|  | 
 | ||
|  | #include <limits> // using std::numeric_limits; | ||
|  | #include <utility> | ||
|  | 
 | ||
|  | #if defined (BOOST_MSVC) | ||
|  | #  pragma warning(push) | ||
|  | // This believed not now necessary, so commented out. | ||
|  | //#  pragma warning(disable: 4702) // unreachable code. | ||
|  | // in domain_error_imp in error_handling. | ||
|  | #endif | ||
|  | 
 | ||
|  | namespace boost | ||
|  | { | ||
|  |   namespace math | ||
|  |   { | ||
|  |     namespace geometric_detail | ||
|  |     { | ||
|  |       // Common error checking routines for geometric distribution function: | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) | ||
|  |         { | ||
|  |           *result = policies::raise_domain_error<RealType>( | ||
|  |             function, | ||
|  |             "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } | ||
|  | 
 | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         return check_success_fraction(function, p, result, pol); | ||
|  |       } | ||
|  | 
 | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_dist_and_k(const char* function,  const RealType& p, RealType k, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if(check_dist(function, p, result, pol) == false) | ||
|  |         { | ||
|  |           return false; | ||
|  |         } | ||
|  |         if( !(boost::math::isfinite)(k) || (k < 0) ) | ||
|  |         { // Check k failures. | ||
|  |           *result = policies::raise_domain_error<RealType>( | ||
|  |             function, | ||
|  |             "Number of failures argument is %1%, but must be >= 0 !", k, pol); | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } // Check_dist_and_k | ||
|  | 
 | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol) | ||
|  |       { | ||
|  |         if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false) | ||
|  |         { | ||
|  |           return false; | ||
|  |         } | ||
|  |         return true; | ||
|  |       } // check_dist_and_prob | ||
|  |     } //  namespace geometric_detail | ||
|  | 
 | ||
|  |     template <class RealType = double, class Policy = policies::policy<> > | ||
|  |     class geometric_distribution | ||
|  |     { | ||
|  |     public: | ||
|  |       typedef RealType value_type; | ||
|  |       typedef Policy policy_type; | ||
|  | 
 | ||
|  |       geometric_distribution(RealType p) : m_p(p) | ||
|  |       { // Constructor stores success_fraction p. | ||
|  |         RealType result; | ||
|  |         geometric_detail::check_dist( | ||
|  |           "geometric_distribution<%1%>::geometric_distribution", | ||
|  |           m_p, // Check success_fraction 0 <= p <= 1. | ||
|  |           &result, Policy()); | ||
|  |       } // geometric_distribution constructor. | ||
|  | 
 | ||
|  |       // Private data getter class member functions. | ||
|  |       RealType success_fraction() const | ||
|  |       { // Probability of success as fraction in range 0 to 1. | ||
|  |         return m_p; | ||
|  |       } | ||
|  |       RealType successes() const | ||
|  |       { // Total number of successes r = 1 (for compatibility with negative binomial?). | ||
|  |         return 1; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Parameter estimation. | ||
|  |       // (These are copies of negative_binomial distribution with successes = 1). | ||
|  |       static RealType find_lower_bound_on_p( | ||
|  |         RealType trials, | ||
|  |         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p"; | ||
|  |         RealType result = 0;  // of error checks. | ||
|  |         RealType successes = 1; | ||
|  |         RealType failures = trials - successes; | ||
|  |         if(false == detail::check_probability(function, alpha, &result, Policy()) | ||
|  |           && geometric_detail::check_dist_and_k( | ||
|  |           function, RealType(0), failures, &result, Policy())) | ||
|  |         { | ||
|  |           return result; | ||
|  |         } | ||
|  |         // Use complement ibeta_inv function for lower bound. | ||
|  |         // This is adapted from the corresponding binomial formula | ||
|  |         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm | ||
|  |         // This is a Clopper-Pearson interval, and may be overly conservative, | ||
|  |         // see also "A Simple Improved Inferential Method for Some | ||
|  |         // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY | ||
|  |         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf | ||
|  |         // | ||
|  |         return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); | ||
|  |       } // find_lower_bound_on_p | ||
|  | 
 | ||
|  |       static RealType find_upper_bound_on_p( | ||
|  |         RealType trials, | ||
|  |         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p"; | ||
|  |         RealType result = 0;  // of error checks. | ||
|  |         RealType successes = 1; | ||
|  |         RealType failures = trials - successes; | ||
|  |         if(false == geometric_detail::check_dist_and_k( | ||
|  |           function, RealType(0), failures, &result, Policy()) | ||
|  |           && detail::check_probability(function, alpha, &result, Policy())) | ||
|  |         { | ||
|  |           return result; | ||
|  |         } | ||
|  |         if(failures == 0) | ||
|  |         { | ||
|  |            return 1; | ||
|  |         }// Use complement ibetac_inv function for upper bound. | ||
|  |         // Note adjusted failures value: *not* failures+1 as usual. | ||
|  |         // This is adapted from the corresponding binomial formula | ||
|  |         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm | ||
|  |         // This is a Clopper-Pearson interval, and may be overly conservative, | ||
|  |         // see also "A Simple Improved Inferential Method for Some | ||
|  |         // Discrete Distributions" Yong CAI and K. Krishnamoorthy | ||
|  |         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf | ||
|  |         // | ||
|  |         return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); | ||
|  |       } // find_upper_bound_on_p | ||
|  | 
 | ||
|  |       // Estimate number of trials : | ||
|  |       // "How many trials do I need to be P% sure of seeing k or fewer failures?" | ||
|  | 
 | ||
|  |       static RealType find_minimum_number_of_trials( | ||
|  |         RealType k,     // number of failures (k >= 0). | ||
|  |         RealType p,     // success fraction 0 <= p <= 1. | ||
|  |         RealType alpha) // risk level threshold 0 <= alpha <= 1. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials"; | ||
|  |         // Error checks: | ||
|  |         RealType result = 0; | ||
|  |         if(false == geometric_detail::check_dist_and_k( | ||
|  |           function, p, k, &result, Policy()) | ||
|  |           && detail::check_probability(function, alpha, &result, Policy())) | ||
|  |         { | ||
|  |           return result; | ||
|  |         } | ||
|  |         result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k | ||
|  |         return result + k; | ||
|  |       } // RealType find_number_of_failures | ||
|  | 
 | ||
|  |       static RealType find_maximum_number_of_trials( | ||
|  |         RealType k,     // number of failures (k >= 0). | ||
|  |         RealType p,     // success fraction 0 <= p <= 1. | ||
|  |         RealType alpha) // risk level threshold 0 <= alpha <= 1. | ||
|  |       { | ||
|  |         static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials"; | ||
|  |         // Error checks: | ||
|  |         RealType result = 0; | ||
|  |         if(false == geometric_detail::check_dist_and_k( | ||
|  |           function, p, k, &result, Policy()) | ||
|  |           &&  detail::check_probability(function, alpha, &result, Policy())) | ||
|  |         {  | ||
|  |           return result; | ||
|  |         } | ||
|  |         result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k | ||
|  |         return result + k; | ||
|  |       } // RealType find_number_of_trials complemented | ||
|  | 
 | ||
|  |     private: | ||
|  |       //RealType m_r; // successes fixed at unity. | ||
|  |       RealType m_p; // success_fraction | ||
|  |     }; // template <class RealType, class Policy> class geometric_distribution | ||
|  | 
 | ||
|  |     typedef geometric_distribution<double> geometric; // Reserved name of type double. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */) | ||
|  |     { // Range of permissible values for random variable k. | ||
|  |        using boost::math::tools::max_value; | ||
|  |        return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */) | ||
|  |     { // Range of supported values for random variable k. | ||
|  |        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. | ||
|  |        using boost::math::tools::max_value; | ||
|  |        return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer? | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType mean(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     { // Mean of geometric distribution = (1-p)/p. | ||
|  |       return (1 - dist.success_fraction() ) / dist.success_fraction(); | ||
|  |     } // mean | ||
|  | 
 | ||
|  |     // median implemented via quantile(half) in derived accessors. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType mode(const geometric_distribution<RealType, Policy>&) | ||
|  |     { // Mode of geometric distribution = zero. | ||
|  |       BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |       return 0; | ||
|  |     } // mode | ||
|  |      | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType variance(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     { // Variance of Binomial distribution = (1-p) / p^2. | ||
|  |       return  (1 - dist.success_fraction()) | ||
|  |         / (dist.success_fraction() * dist.success_fraction()); | ||
|  |     } // variance | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType skewness(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     { // skewness of geometric distribution = 2-p / (sqrt(r(1-p)) | ||
|  |       BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       return (2 - p) / sqrt(1 - p); | ||
|  |     } // skewness | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     { // kurtosis of geometric distribution | ||
|  |       // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3 | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       return 3 + (p*p - 6*p + 6) / (1 - p); | ||
|  |     } // kurtosis | ||
|  | 
 | ||
|  |      template <class RealType, class Policy> | ||
|  |     inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     { // kurtosis excess of geometric distribution | ||
|  |       // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       return (p*p - 6*p + 6) / (1 - p); | ||
|  |     } // kurtosis_excess | ||
|  | 
 | ||
|  |     // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     // standard_deviation provided by derived accessors. | ||
|  |     // RealType hazard(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     // hazard of geometric distribution provided by derived accessors. | ||
|  |     // RealType chf(const geometric_distribution<RealType, Policy>& dist) | ||
|  |     // chf of geometric distribution provided by derived accessors. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) | ||
|  |     { // Probability Density/Mass Function. | ||
|  |       BOOST_FPU_EXCEPTION_GUARD | ||
|  |       BOOST_MATH_STD_USING  // For ADL of math functions. | ||
|  |       static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)"; | ||
|  | 
 | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       RealType result = 0; | ||
|  |       if(false == geometric_detail::check_dist_and_k( | ||
|  |         function, | ||
|  |         p, | ||
|  |         k, | ||
|  |         &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  |       if (k == 0) | ||
|  |       { | ||
|  |         return p; // success_fraction | ||
|  |       } | ||
|  |       RealType q = 1 - p;  // Inaccurate for small p? | ||
|  |       // So try to avoid inaccuracy for large or small p. | ||
|  |       // but has little effect > last significant bit. | ||
|  |       //cout << "p *  pow(q, k) " << result << endl; // seems best whatever p | ||
|  |       //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl; | ||
|  |       //if (p < 0.5) | ||
|  |       //{ | ||
|  |       //  result = p *  pow(q, k); | ||
|  |       //} | ||
|  |       //else | ||
|  |       //{ | ||
|  |       //  result = p * exp(k * log1p(-p)); | ||
|  |       //} | ||
|  |       result = p * pow(q, k); | ||
|  |       return result; | ||
|  |     } // geometric_pdf | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) | ||
|  |     { // Cumulative Distribution Function of geometric. | ||
|  |       static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; | ||
|  | 
 | ||
|  |       // k argument may be integral, signed, or unsigned, or floating point. | ||
|  |       // If necessary, it has already been promoted from an integral type. | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       // Error check: | ||
|  |       RealType result = 0; | ||
|  |       if(false == geometric_detail::check_dist_and_k( | ||
|  |         function, | ||
|  |         p, | ||
|  |         k, | ||
|  |         &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  |       if(k == 0) | ||
|  |       { | ||
|  |         return p; // success_fraction | ||
|  |       } | ||
|  |       //RealType q = 1 - p;  // Bad for small p | ||
|  |       //RealType probability = 1 - std::pow(q, k+1); | ||
|  | 
 | ||
|  |       RealType z = boost::math::log1p(-p, Policy()) * (k + 1); | ||
|  |       RealType probability = -boost::math::expm1(z, Policy()); | ||
|  | 
 | ||
|  |       return probability; | ||
|  |     } // cdf Cumulative Distribution Function geometric. | ||
|  | 
 | ||
|  |       template <class RealType, class Policy> | ||
|  |       inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) | ||
|  |       { // Complemented Cumulative Distribution Function geometric. | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; | ||
|  |       // k argument may be integral, signed, or unsigned, or floating point. | ||
|  |       // If necessary, it has already been promoted from an integral type. | ||
|  |       RealType const& k = c.param; | ||
|  |       geometric_distribution<RealType, Policy> const& dist = c.dist; | ||
|  |       RealType p = dist.success_fraction(); | ||
|  |       // Error check: | ||
|  |       RealType result = 0; | ||
|  |       if(false == geometric_detail::check_dist_and_k( | ||
|  |         function, | ||
|  |         p, | ||
|  |         k, | ||
|  |         &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  |       RealType z = boost::math::log1p(-p, Policy()) * (k+1); | ||
|  |       RealType probability = exp(z); | ||
|  |       return probability; | ||
|  |     } // cdf Complemented Cumulative Distribution Function geometric. | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x) | ||
|  |     { // Quantile, percentile/100 or Percent Point geometric function. | ||
|  |       // Return the number of expected failures k for a given probability p. | ||
|  | 
 | ||
|  |       // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability. | ||
|  |       // k argument may be integral, signed, or unsigned, or floating point. | ||
|  | 
 | ||
|  |       static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; | ||
|  |       BOOST_MATH_STD_USING // ADL of std functions. | ||
|  | 
 | ||
|  |       RealType success_fraction = dist.success_fraction(); | ||
|  |       // Check dist and x. | ||
|  |       RealType result = 0; | ||
|  |       if(false == geometric_detail::check_dist_and_prob | ||
|  |         (function, success_fraction, x, &result, Policy())) | ||
|  |       { | ||
|  |         return result; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Special cases. | ||
|  |       if (x == 1) | ||
|  |       {  // Would need +infinity failures for total confidence. | ||
|  |         result = policies::raise_overflow_error<RealType>( | ||
|  |             function, | ||
|  |             "Probability argument is 1, which implies infinite failures !", Policy()); | ||
|  |         return result; | ||
|  |        // usually means return +std::numeric_limits<RealType>::infinity(); | ||
|  |        // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR | ||
|  |       } | ||
|  |       if (x == 0) | ||
|  |       { // No failures are expected if P = 0. | ||
|  |         return 0; // Total trials will be just dist.successes. | ||
|  |       } | ||
|  |       // if (P <= pow(dist.success_fraction(), 1)) | ||
|  |       if (x <= success_fraction) | ||
|  |       { // p <= pdf(dist, 0) == cdf(dist, 0) | ||
|  |         return 0; | ||
|  |       } | ||
|  |       if (x == 1) | ||
|  |       { | ||
|  |         return 0; | ||
|  |       } | ||
|  |     | ||
|  |       // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small | ||
|  |       result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1; | ||
|  |       // Subtract a few epsilons here too? | ||
|  |       // to make sure it doesn't slip over, so ceil would be one too many. | ||
|  |       return result; | ||
|  |     } // RealType quantile(const geometric_distribution dist, p) | ||
|  | 
 | ||
|  |     template <class RealType, class Policy> | ||
|  |     inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) | ||
|  |     {  // Quantile or Percent Point Binomial function. | ||
|  |        // Return the number of expected failures k for a given | ||
|  |        // complement of the probability Q = 1 - P. | ||
|  |        static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; | ||
|  |        BOOST_MATH_STD_USING | ||
|  |        // Error checks: | ||
|  |        RealType x = c.param; | ||
|  |        const geometric_distribution<RealType, Policy>& dist = c.dist; | ||
|  |        RealType success_fraction = dist.success_fraction(); | ||
|  |        RealType result = 0; | ||
|  |        if(false == geometric_detail::check_dist_and_prob( | ||
|  |           function, | ||
|  |           success_fraction, | ||
|  |           x, | ||
|  |           &result, Policy())) | ||
|  |        { | ||
|  |           return result; | ||
|  |        } | ||
|  | 
 | ||
|  |        // Special cases: | ||
|  |        if(x == 1) | ||
|  |        {  // There may actually be no answer to this question, | ||
|  |           // since the probability of zero failures may be non-zero, | ||
|  |           return 0; // but zero is the best we can do: | ||
|  |        } | ||
|  |        if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) | ||
|  |        {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0) | ||
|  |           return 0; // | ||
|  |        } | ||
|  |        if(x == 0) | ||
|  |        {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty. | ||
|  |           // Would need +infinity failures for total confidence. | ||
|  |           result = policies::raise_overflow_error<RealType>( | ||
|  |              function, | ||
|  |              "Probability argument complement is 0, which implies infinite failures !", Policy()); | ||
|  |           return result; | ||
|  |           // usually means return +std::numeric_limits<RealType>::infinity(); | ||
|  |           // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR | ||
|  |        } | ||
|  |        // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small | ||
|  |        result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1; | ||
|  |       return result; | ||
|  | 
 | ||
|  |     } // quantile complement | ||
|  | 
 | ||
|  |  } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | // This include must be at the end, *after* the accessors | ||
|  | // for this distribution have been defined, in order to | ||
|  | // keep compilers that support two-phase lookup happy. | ||
|  | #include <boost/math/distributions/detail/derived_accessors.hpp> | ||
|  | 
 | ||
|  | #if defined (BOOST_MSVC) | ||
|  | # pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP |