708 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			708 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Boost rational.hpp header file  ------------------------------------------// | ||
|  | 
 | ||
|  | //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and | ||
|  | //  distribute this software is granted provided this copyright notice appears | ||
|  | //  in all copies. This software is provided "as is" without express or | ||
|  | //  implied warranty, and with no claim as to its suitability for any purpose. | ||
|  | 
 | ||
|  | // boostinspect:nolicense (don't complain about the lack of a Boost license) | ||
|  | // (Paul Moore hasn't been in contact for years, so there's no way to change the | ||
|  | // license.) | ||
|  | 
 | ||
|  | //  See http://www.boost.org/libs/rational for documentation. | ||
|  | 
 | ||
|  | //  Credits: | ||
|  | //  Thanks to the boost mailing list in general for useful comments. | ||
|  | //  Particular contributions included: | ||
|  | //    Andrew D Jewell, for reminding me to take care to avoid overflow | ||
|  | //    Ed Brey, for many comments, including picking up on some dreadful typos | ||
|  | //    Stephen Silver contributed the test suite and comments on user-defined | ||
|  | //    IntType | ||
|  | //    Nickolay Mladenov, for the implementation of operator+= | ||
|  | 
 | ||
|  | //  Revision History | ||
|  | //  02 Sep 13  Remove unneeded forward declarations; tweak private helper | ||
|  | //             function (Daryle Walker) | ||
|  | //  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code | ||
|  | //             (Daryle Walker) | ||
|  | //  27 Aug 13  Add cross-version constructor template, plus some private helper | ||
|  | //             functions; add constructor to exception class to take custom | ||
|  | //             messages (Daryle Walker) | ||
|  | //  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker) | ||
|  | //  05 May 12  Reduced use of implicit gcd (Mario Lang) | ||
|  | //  05 Nov 06  Change rational_cast to not depend on division between different | ||
|  | //             types (Daryle Walker) | ||
|  | //  04 Nov 06  Off-load GCD and LCM to Boost.Math; add some invariant checks; | ||
|  | //             add std::numeric_limits<> requirement to help GCD (Daryle Walker) | ||
|  | //  31 Oct 06  Recoded both operator< to use round-to-negative-infinity | ||
|  | //             divisions; the rational-value version now uses continued fraction | ||
|  | //             expansion to avoid overflows, for bug #798357 (Daryle Walker) | ||
|  | //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) | ||
|  | //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config | ||
|  | //             (Joaquín M López Muñoz) | ||
|  | //  27 Dec 05  Add Boolean conversion operator (Daryle Walker) | ||
|  | //  28 Sep 02  Use _left versions of operators from operators.hpp | ||
|  | //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel) | ||
|  | //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams) | ||
|  | //  05 Feb 01  Update operator>> to tighten up input syntax | ||
|  | //  05 Feb 01  Final tidy up of gcd code prior to the new release | ||
|  | //  27 Jan 01  Recode abs() without relying on abs(IntType) | ||
|  | //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm, | ||
|  | //             tidy up a number of areas, use newer features of operators.hpp | ||
|  | //             (reduces space overhead to zero), add operator!, | ||
|  | //             introduce explicit mixed-mode arithmetic operations | ||
|  | //  12 Jan 01  Include fixes to handle a user-defined IntType better | ||
|  | //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David) | ||
|  | //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++ | ||
|  | //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not | ||
|  | //             affected (Beman Dawes) | ||
|  | //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer) | ||
|  | //  14 Dec 99  Modifications based on comments from the boost list | ||
|  | //  09 Dec 99  Initial Version (Paul Moore) | ||
|  | 
 | ||
|  | #ifndef BOOST_RATIONAL_HPP | ||
|  | #define BOOST_RATIONAL_HPP | ||
|  | 
 | ||
|  | #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc | ||
|  | #ifndef BOOST_NO_IOSTREAM | ||
|  | #include <iomanip>               // for std::setw | ||
|  | #include <ios>                   // for std::noskipws, streamsize | ||
|  | #include <istream>               // for std::istream | ||
|  | #include <ostream>               // for std::ostream | ||
|  | #include <sstream>               // for std::ostringstream | ||
|  | #endif | ||
|  | #include <cstddef>               // for NULL | ||
|  | #include <stdexcept>             // for std::domain_error | ||
|  | #include <string>                // for std::string implicit constructor | ||
|  | #include <boost/operators.hpp>   // for boost::addable etc | ||
|  | #include <cstdlib>               // for std::abs | ||
|  | #include <boost/call_traits.hpp> // for boost::call_traits | ||
|  | #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND | ||
|  | #include <boost/assert.hpp>      // for BOOST_ASSERT | ||
|  | #include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm | ||
|  | #include <limits>                // for std::numeric_limits | ||
|  | #include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT | ||
|  | #include <boost/throw_exception.hpp> | ||
|  | 
 | ||
|  | // Control whether depreciated GCD and LCM functions are included (default: yes) | ||
|  | #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD | ||
|  | #define BOOST_CONTROL_RATIONAL_HAS_GCD  1 | ||
|  | #endif | ||
|  | 
 | ||
|  | namespace boost { | ||
|  | 
 | ||
|  | #if BOOST_CONTROL_RATIONAL_HAS_GCD | ||
|  | template <typename IntType> | ||
|  | IntType gcd(IntType n, IntType m) | ||
|  | { | ||
|  |     // Defer to the version in Boost.Math | ||
|  |     return integer::gcd( n, m ); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | IntType lcm(IntType n, IntType m) | ||
|  | { | ||
|  |     // Defer to the version in Boost.Math | ||
|  |     return integer::lcm( n, m ); | ||
|  | } | ||
|  | #endif  // BOOST_CONTROL_RATIONAL_HAS_GCD | ||
|  | 
 | ||
|  | class bad_rational : public std::domain_error | ||
|  | { | ||
|  | public: | ||
|  |     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} | ||
|  |     explicit bad_rational( char const *what ) : std::domain_error( what ) {} | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | class rational : | ||
|  |     less_than_comparable < rational<IntType>, | ||
|  |     equality_comparable < rational<IntType>, | ||
|  |     less_than_comparable2 < rational<IntType>, IntType, | ||
|  |     equality_comparable2 < rational<IntType>, IntType, | ||
|  |     addable < rational<IntType>, | ||
|  |     subtractable < rational<IntType>, | ||
|  |     multipliable < rational<IntType>, | ||
|  |     dividable < rational<IntType>, | ||
|  |     addable2 < rational<IntType>, IntType, | ||
|  |     subtractable2 < rational<IntType>, IntType, | ||
|  |     subtractable2_left < rational<IntType>, IntType, | ||
|  |     multipliable2 < rational<IntType>, IntType, | ||
|  |     dividable2 < rational<IntType>, IntType, | ||
|  |     dividable2_left < rational<IntType>, IntType, | ||
|  |     incrementable < rational<IntType>, | ||
|  |     decrementable < rational<IntType> | ||
|  |     > > > > > > > > > > > > > > > > | ||
|  | { | ||
|  |     // Class-wide pre-conditions | ||
|  |     BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized ); | ||
|  | 
 | ||
|  |     // Helper types | ||
|  |     typedef typename boost::call_traits<IntType>::param_type param_type; | ||
|  | 
 | ||
|  |     struct helper { IntType parts[2]; }; | ||
|  |     typedef IntType (helper::* bool_type)[2]; | ||
|  | 
 | ||
|  | public: | ||
|  |     // Component type | ||
|  |     typedef IntType int_type; | ||
|  | 
 | ||
|  |     BOOST_CONSTEXPR | ||
|  |     rational() : num(0), den(1) {} | ||
|  |     BOOST_CONSTEXPR | ||
|  |     rational(param_type n) : num(n), den(1) {} | ||
|  |     rational(param_type n, param_type d) : num(n), den(d) { normalize(); } | ||
|  | 
 | ||
|  | #ifndef BOOST_NO_MEMBER_TEMPLATES | ||
|  |     template < typename NewType > | ||
|  |     BOOST_CONSTEXPR explicit | ||
|  |        rational(rational<NewType> const &r) | ||
|  |        : num(r.numerator()), den(is_normalized(int_type(r.numerator()), | ||
|  |        int_type(r.denominator())) ? r.denominator() : | ||
|  |        (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){} | ||
|  | #endif | ||
|  | 
 | ||
|  |     // Default copy constructor and assignment are fine | ||
|  | 
 | ||
|  |     // Add assignment from IntType | ||
|  |     rational& operator=(param_type i) { num = i; den = 1; return *this; } | ||
|  | 
 | ||
|  |     // Assign in place | ||
|  |     rational& assign(param_type n, param_type d); | ||
|  | 
 | ||
|  |     // Access to representation | ||
|  |     BOOST_CONSTEXPR | ||
|  |     const IntType& numerator() const { return num; } | ||
|  |     BOOST_CONSTEXPR | ||
|  |     const IntType& denominator() const { return den; } | ||
|  | 
 | ||
|  |     // Arithmetic assignment operators | ||
|  |     rational& operator+= (const rational& r); | ||
|  |     rational& operator-= (const rational& r); | ||
|  |     rational& operator*= (const rational& r); | ||
|  |     rational& operator/= (const rational& r); | ||
|  | 
 | ||
|  |     rational& operator+= (param_type i) { num += i * den; return *this; } | ||
|  |     rational& operator-= (param_type i) { num -= i * den; return *this; } | ||
|  |     rational& operator*= (param_type i); | ||
|  |     rational& operator/= (param_type i); | ||
|  | 
 | ||
|  |     // Increment and decrement | ||
|  |     const rational& operator++() { num += den; return *this; } | ||
|  |     const rational& operator--() { num -= den; return *this; } | ||
|  | 
 | ||
|  |     // Operator not | ||
|  |     BOOST_CONSTEXPR | ||
|  |     bool operator!() const { return !num; } | ||
|  | 
 | ||
|  |     // Boolean conversion | ||
|  |      | ||
|  | #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) | ||
|  |     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the | ||
|  |     // following, hence we selectively disable that option for the | ||
|  |     // offending memfun. | ||
|  | #pragma parse_mfunc_templ off | ||
|  | #endif | ||
|  | 
 | ||
|  |     BOOST_CONSTEXPR | ||
|  |     operator bool_type() const { return operator !() ? 0 : &helper::parts; } | ||
|  | 
 | ||
|  | #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) | ||
|  | #pragma parse_mfunc_templ reset | ||
|  | #endif | ||
|  | 
 | ||
|  |     // Comparison operators | ||
|  |     bool operator< (const rational& r) const; | ||
|  |     BOOST_CONSTEXPR | ||
|  |     bool operator== (const rational& r) const; | ||
|  | 
 | ||
|  |     bool operator< (param_type i) const; | ||
|  |     bool operator> (param_type i) const; | ||
|  |     BOOST_CONSTEXPR | ||
|  |     bool operator== (param_type i) const; | ||
|  | 
 | ||
|  | private: | ||
|  |     // Implementation - numerator and denominator (normalized). | ||
|  |     // Other possibilities - separate whole-part, or sign, fields? | ||
|  |     IntType num; | ||
|  |     IntType den; | ||
|  | 
 | ||
|  |     // Helper functions | ||
|  |     static BOOST_CONSTEXPR | ||
|  |     int_type inner_gcd( param_type a, param_type b, int_type const &zero = | ||
|  |      int_type(0) ) | ||
|  |     { return b == zero ? a : inner_gcd(b, a % b, zero); } | ||
|  | 
 | ||
|  |     static BOOST_CONSTEXPR | ||
|  |     int_type inner_abs( param_type x, int_type const &zero = int_type(0) ) | ||
|  |     { return x < zero ? -x : +x; } | ||
|  | 
 | ||
|  |     // Representation note: Fractions are kept in normalized form at all | ||
|  |     // times. normalized form is defined as gcd(num,den) == 1 and den > 0. | ||
|  |     // In particular, note that the implementation of abs() below relies | ||
|  |     // on den always being positive. | ||
|  |     bool test_invariant() const; | ||
|  |     void normalize(); | ||
|  | 
 | ||
|  |     static BOOST_CONSTEXPR | ||
|  |     bool is_normalized( param_type n, param_type d, int_type const &zero = | ||
|  |      int_type(0), int_type const &one = int_type(1) ) | ||
|  |     { | ||
|  |         return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n, | ||
|  |          d, zero), zero ) == one; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | // Assign in place | ||
|  | template <typename IntType> | ||
|  | inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d) | ||
|  | { | ||
|  |     return *this = rational( n, d ); | ||
|  | } | ||
|  | 
 | ||
|  | // Unary plus and minus | ||
|  | template <typename IntType> | ||
|  | BOOST_CONSTEXPR | ||
|  | inline rational<IntType> operator+ (const rational<IntType>& r) | ||
|  | { | ||
|  |     return r; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | inline rational<IntType> operator- (const rational<IntType>& r) | ||
|  | { | ||
|  |     return rational<IntType>(-r.numerator(), r.denominator()); | ||
|  | } | ||
|  | 
 | ||
|  | // Arithmetic assignment operators | ||
|  | template <typename IntType> | ||
|  | rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r) | ||
|  | { | ||
|  |     // This calculation avoids overflow, and minimises the number of expensive | ||
|  |     // calculations. Thanks to Nickolay Mladenov for this algorithm. | ||
|  |     // | ||
|  |     // Proof: | ||
|  |     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. | ||
|  |     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 | ||
|  |     // | ||
|  |     // The result is (a*d1 + c*b1) / (b1*d1*g). | ||
|  |     // Now we have to normalize this ratio. | ||
|  |     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 | ||
|  |     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. | ||
|  |     // But since gcd(a,b1)=1 we have h=1. | ||
|  |     // Similarly h|d1 leads to h=1. | ||
|  |     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g | ||
|  |     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) | ||
|  |     // Which proves that instead of normalizing the result, it is better to | ||
|  |     // divide num and den by gcd((a*d1 + c*b1), g) | ||
|  | 
 | ||
|  |     // Protect against self-modification | ||
|  |     IntType r_num = r.num; | ||
|  |     IntType r_den = r.den; | ||
|  | 
 | ||
|  |     IntType g = integer::gcd(den, r_den); | ||
|  |     den /= g;  // = b1 from the calculations above | ||
|  |     num = num * (r_den / g) + r_num * den; | ||
|  |     g = integer::gcd(num, g); | ||
|  |     num /= g; | ||
|  |     den *= r_den/g; | ||
|  | 
 | ||
|  |     return *this; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r) | ||
|  | { | ||
|  |     // Protect against self-modification | ||
|  |     IntType r_num = r.num; | ||
|  |     IntType r_den = r.den; | ||
|  | 
 | ||
|  |     // This calculation avoids overflow, and minimises the number of expensive | ||
|  |     // calculations. It corresponds exactly to the += case above | ||
|  |     IntType g = integer::gcd(den, r_den); | ||
|  |     den /= g; | ||
|  |     num = num * (r_den / g) - r_num * den; | ||
|  |     g = integer::gcd(num, g); | ||
|  |     num /= g; | ||
|  |     den *= r_den/g; | ||
|  | 
 | ||
|  |     return *this; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r) | ||
|  | { | ||
|  |     // Protect against self-modification | ||
|  |     IntType r_num = r.num; | ||
|  |     IntType r_den = r.den; | ||
|  | 
 | ||
|  |     // Avoid overflow and preserve normalization | ||
|  |     IntType gcd1 = integer::gcd(num, r_den); | ||
|  |     IntType gcd2 = integer::gcd(r_num, den); | ||
|  |     num = (num/gcd1) * (r_num/gcd2); | ||
|  |     den = (den/gcd2) * (r_den/gcd1); | ||
|  |     return *this; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r) | ||
|  | { | ||
|  |     // Protect against self-modification | ||
|  |     IntType r_num = r.num; | ||
|  |     IntType r_den = r.den; | ||
|  | 
 | ||
|  |     // Avoid repeated construction | ||
|  |     IntType zero(0); | ||
|  | 
 | ||
|  |     // Trap division by zero | ||
|  |     if (r_num == zero) | ||
|  |         BOOST_THROW_EXCEPTION(bad_rational()); | ||
|  |     if (num == zero) | ||
|  |         return *this; | ||
|  | 
 | ||
|  |     // Avoid overflow and preserve normalization | ||
|  |     IntType gcd1 = integer::gcd(num, r_num); | ||
|  |     IntType gcd2 = integer::gcd(r_den, den); | ||
|  |     num = (num/gcd1) * (r_den/gcd2); | ||
|  |     den = (den/gcd2) * (r_num/gcd1); | ||
|  | 
 | ||
|  |     if (den < zero) { | ||
|  |         num = -num; | ||
|  |         den = -den; | ||
|  |     } | ||
|  |     return *this; | ||
|  | } | ||
|  | 
 | ||
|  | // Mixed-mode operators | ||
|  | template <typename IntType> | ||
|  | inline rational<IntType>& | ||
|  | rational<IntType>::operator*= (param_type i) | ||
|  | { | ||
|  |     // Avoid overflow and preserve normalization | ||
|  |     IntType gcd = integer::gcd(i, den); | ||
|  |     num *= i / gcd; | ||
|  |     den /= gcd; | ||
|  | 
 | ||
|  |     return *this; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | rational<IntType>& | ||
|  | rational<IntType>::operator/= (param_type i) | ||
|  | { | ||
|  |     // Avoid repeated construction | ||
|  |     IntType const zero(0); | ||
|  | 
 | ||
|  |     if(i == zero) BOOST_THROW_EXCEPTION(bad_rational()); | ||
|  |     if (num == zero) return *this; | ||
|  | 
 | ||
|  |     // Avoid overflow and preserve normalization | ||
|  |     IntType const gcd = integer::gcd(num, i); | ||
|  |     num /= gcd; | ||
|  |     den *= i / gcd; | ||
|  | 
 | ||
|  |     if (den < zero) { | ||
|  |         num = -num; | ||
|  |         den = -den; | ||
|  |     } | ||
|  | 
 | ||
|  |     return *this; | ||
|  | } | ||
|  | 
 | ||
|  | // Comparison operators | ||
|  | template <typename IntType> | ||
|  | bool rational<IntType>::operator< (const rational<IntType>& r) const | ||
|  | { | ||
|  |     // Avoid repeated construction | ||
|  |     int_type const  zero( 0 ); | ||
|  | 
 | ||
|  |     // This should really be a class-wide invariant.  The reason for these | ||
|  |     // checks is that for 2's complement systems, INT_MIN has no corresponding | ||
|  |     // positive, so negating it during normalization keeps it INT_MIN, which | ||
|  |     // is bad for later calculations that assume a positive denominator. | ||
|  |     BOOST_ASSERT( this->den > zero ); | ||
|  |     BOOST_ASSERT( r.den > zero ); | ||
|  | 
 | ||
|  |     // Determine relative order by expanding each value to its simple continued | ||
|  |     // fraction representation using the Euclidian GCD algorithm. | ||
|  |     struct { int_type  n, d, q, r; } | ||
|  |      ts = { this->num, this->den, static_cast<int_type>(this->num / this->den), | ||
|  |      static_cast<int_type>(this->num % this->den) }, | ||
|  |      rs = { r.num, r.den, static_cast<int_type>(r.num / r.den), | ||
|  |      static_cast<int_type>(r.num % r.den) }; | ||
|  |     unsigned  reverse = 0u; | ||
|  | 
 | ||
|  |     // Normalize negative moduli by repeatedly adding the (positive) denominator | ||
|  |     // and decrementing the quotient.  Later cycles should have all positive | ||
|  |     // values, so this only has to be done for the first cycle.  (The rules of | ||
|  |     // C++ require a nonnegative quotient & remainder for a nonnegative dividend | ||
|  |     // & positive divisor.) | ||
|  |     while ( ts.r < zero )  { ts.r += ts.d; --ts.q; } | ||
|  |     while ( rs.r < zero )  { rs.r += rs.d; --rs.q; } | ||
|  | 
 | ||
|  |     // Loop through and compare each variable's continued-fraction components | ||
|  |     for ( ;; ) | ||
|  |     { | ||
|  |         // The quotients of the current cycle are the continued-fraction | ||
|  |         // components.  Comparing two c.f. is comparing their sequences, | ||
|  |         // stopping at the first difference. | ||
|  |         if ( ts.q != rs.q ) | ||
|  |         { | ||
|  |             // Since reciprocation changes the relative order of two variables, | ||
|  |             // and c.f. use reciprocals, the less/greater-than test reverses | ||
|  |             // after each index.  (Start w/ non-reversed @ whole-number place.) | ||
|  |             return reverse ? ts.q > rs.q : ts.q < rs.q; | ||
|  |         } | ||
|  | 
 | ||
|  |         // Prepare the next cycle | ||
|  |         reverse ^= 1u; | ||
|  | 
 | ||
|  |         if ( (ts.r == zero) || (rs.r == zero) ) | ||
|  |         { | ||
|  |             // At least one variable's c.f. expansion has ended | ||
|  |             break; | ||
|  |         } | ||
|  | 
 | ||
|  |         ts.n = ts.d;         ts.d = ts.r; | ||
|  |         ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d; | ||
|  |         rs.n = rs.d;         rs.d = rs.r; | ||
|  |         rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Compare infinity-valued components for otherwise equal sequences | ||
|  |     if ( ts.r == rs.r ) | ||
|  |     { | ||
|  |         // Both remainders are zero, so the next (and subsequent) c.f. | ||
|  |         // components for both sequences are infinity.  Therefore, the sequences | ||
|  |         // and their corresponding values are equal. | ||
|  |         return false; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  | #ifdef BOOST_MSVC | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4800) | ||
|  | #endif | ||
|  |         // Exactly one of the remainders is zero, so all following c.f. | ||
|  |         // components of that variable are infinity, while the other variable | ||
|  |         // has a finite next c.f. component.  So that other variable has the | ||
|  |         // lesser value (modulo the reversal flag!). | ||
|  |         return ( ts.r != zero ) != static_cast<bool>( reverse ); | ||
|  | #ifdef BOOST_MSVC | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | bool rational<IntType>::operator< (param_type i) const | ||
|  | { | ||
|  |     // Avoid repeated construction | ||
|  |     int_type const  zero( 0 ); | ||
|  | 
 | ||
|  |     // Break value into mixed-fraction form, w/ always-nonnegative remainder | ||
|  |     BOOST_ASSERT( this->den > zero ); | ||
|  |     int_type  q = this->num / this->den, r = this->num % this->den; | ||
|  |     while ( r < zero )  { r += this->den; --q; } | ||
|  | 
 | ||
|  |     // Compare with just the quotient, since the remainder always bumps the | ||
|  |     // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i | ||
|  |     // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then | ||
|  |     // q >= i + 1 > i; therefore n/d < i iff q < i.] | ||
|  |     return q < i; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | bool rational<IntType>::operator> (param_type i) const | ||
|  | { | ||
|  |     return operator==(i)? false: !operator<(i); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | BOOST_CONSTEXPR | ||
|  | inline bool rational<IntType>::operator== (const rational<IntType>& r) const | ||
|  | { | ||
|  |     return ((num == r.num) && (den == r.den)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | BOOST_CONSTEXPR | ||
|  | inline bool rational<IntType>::operator== (param_type i) const | ||
|  | { | ||
|  |     return ((den == IntType(1)) && (num == i)); | ||
|  | } | ||
|  | 
 | ||
|  | // Invariant check | ||
|  | template <typename IntType> | ||
|  | inline bool rational<IntType>::test_invariant() const | ||
|  | { | ||
|  |     return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) == | ||
|  |      int_type(1) ); | ||
|  | } | ||
|  | 
 | ||
|  | // Normalisation | ||
|  | template <typename IntType> | ||
|  | void rational<IntType>::normalize() | ||
|  | { | ||
|  |     // Avoid repeated construction | ||
|  |     IntType zero(0); | ||
|  | 
 | ||
|  |     if (den == zero) | ||
|  |        BOOST_THROW_EXCEPTION(bad_rational()); | ||
|  | 
 | ||
|  |     // Handle the case of zero separately, to avoid division by zero | ||
|  |     if (num == zero) { | ||
|  |         den = IntType(1); | ||
|  |         return; | ||
|  |     } | ||
|  | 
 | ||
|  |     IntType g = integer::gcd(num, den); | ||
|  | 
 | ||
|  |     num /= g; | ||
|  |     den /= g; | ||
|  | 
 | ||
|  |     // Ensure that the denominator is positive | ||
|  |     if (den < zero) { | ||
|  |         num = -num; | ||
|  |         den = -den; | ||
|  |     } | ||
|  | 
 | ||
|  |     // ...But acknowledge that the previous step doesn't always work. | ||
|  |     // (Nominally, this should be done before the mutating steps, but this | ||
|  |     // member function is only called during the constructor, so we never have | ||
|  |     // to worry about zombie objects.) | ||
|  |     if (den < zero) | ||
|  |        BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator")); | ||
|  | 
 | ||
|  |     BOOST_ASSERT( this->test_invariant() ); | ||
|  | } | ||
|  | 
 | ||
|  | #ifndef BOOST_NO_IOSTREAM | ||
|  | namespace detail { | ||
|  | 
 | ||
|  |     // A utility class to reset the format flags for an istream at end | ||
|  |     // of scope, even in case of exceptions | ||
|  |     struct resetter { | ||
|  |         resetter(std::istream& is) : is_(is), f_(is.flags()) {} | ||
|  |         ~resetter() { is_.flags(f_); } | ||
|  |         std::istream& is_; | ||
|  |         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base | ||
|  |     }; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | // Input and output | ||
|  | template <typename IntType> | ||
|  | std::istream& operator>> (std::istream& is, rational<IntType>& r) | ||
|  | { | ||
|  |     using std::ios; | ||
|  | 
 | ||
|  |     IntType n = IntType(0), d = IntType(1); | ||
|  |     char c = 0; | ||
|  |     detail::resetter sentry(is); | ||
|  | 
 | ||
|  |     if ( is >> n ) | ||
|  |     { | ||
|  |         if ( is.get(c) ) | ||
|  |         { | ||
|  |             if ( c == '/' ) | ||
|  |             { | ||
|  |                 if ( is >> std::noskipws >> d ) | ||
|  |                     try { | ||
|  |                         r.assign( n, d ); | ||
|  |                     } catch ( bad_rational & ) {        // normalization fail | ||
|  |                         try { is.setstate(ios::failbit); } | ||
|  |                         catch ( ... ) {}  // don't throw ios_base::failure... | ||
|  |                         if ( is.exceptions() & ios::failbit ) | ||
|  |                             throw;   // ...but the original exception instead | ||
|  |                         // ELSE: suppress the exception, use just error flags | ||
|  |                     } | ||
|  |             } | ||
|  |             else | ||
|  |                 is.setstate( ios::failbit ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     return is; | ||
|  | } | ||
|  | 
 | ||
|  | // Add manipulators for output format? | ||
|  | template <typename IntType> | ||
|  | std::ostream& operator<< (std::ostream& os, const rational<IntType>& r) | ||
|  | { | ||
|  |     // The slash directly precedes the denominator, which has no prefixes. | ||
|  |     std::ostringstream  ss; | ||
|  | 
 | ||
|  |     ss.copyfmt( os ); | ||
|  |     ss.tie( NULL ); | ||
|  |     ss.exceptions( std::ios::goodbit ); | ||
|  |     ss.width( 0 ); | ||
|  |     ss << std::noshowpos << std::noshowbase << '/' << r.denominator(); | ||
|  | 
 | ||
|  |     // The numerator holds the showpos, internal, and showbase flags. | ||
|  |     std::string const   tail = ss.str(); | ||
|  |     std::streamsize const  w = | ||
|  |         os.width() - static_cast<std::streamsize>( tail.size() ); | ||
|  | 
 | ||
|  |     ss.clear(); | ||
|  |     ss.str( "" ); | ||
|  |     ss.flags( os.flags() ); | ||
|  |     ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) != | ||
|  |                      std::ios::internal ? 0 : w ) << r.numerator(); | ||
|  |     return os << ss.str() + tail; | ||
|  | } | ||
|  | #endif  // BOOST_NO_IOSTREAM | ||
|  | 
 | ||
|  | // Type conversion | ||
|  | template <typename T, typename IntType> | ||
|  | BOOST_CONSTEXPR | ||
|  | inline T rational_cast(const rational<IntType>& src) | ||
|  | { | ||
|  |     return static_cast<T>(src.numerator())/static_cast<T>(src.denominator()); | ||
|  | } | ||
|  | 
 | ||
|  | // Do not use any abs() defined on IntType - it isn't worth it, given the | ||
|  | // difficulties involved (Koenig lookup required, there may not *be* an abs() | ||
|  | // defined, etc etc). | ||
|  | template <typename IntType> | ||
|  | inline rational<IntType> abs(const rational<IntType>& r) | ||
|  | { | ||
|  |     return r.numerator() >= IntType(0)? r: -r; | ||
|  | } | ||
|  | 
 | ||
|  | namespace integer { | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | struct gcd_evaluator< rational<IntType> > | ||
|  | { | ||
|  |     typedef rational<IntType> result_type, | ||
|  |                               first_argument_type, second_argument_type; | ||
|  |     result_type operator() (  first_argument_type const &a | ||
|  |                            , second_argument_type const &b | ||
|  |                            ) const | ||
|  |     { | ||
|  |         return result_type(integer::gcd(a.numerator(), b.numerator()), | ||
|  |                            integer::lcm(a.denominator(), b.denominator())); | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename IntType> | ||
|  | struct lcm_evaluator< rational<IntType> > | ||
|  | { | ||
|  |     typedef rational<IntType> result_type, | ||
|  |                               first_argument_type, second_argument_type; | ||
|  |     result_type operator() (  first_argument_type const &a | ||
|  |                            , second_argument_type const &b | ||
|  |                            ) const | ||
|  |     { | ||
|  |         return result_type(integer::lcm(a.numerator(), b.numerator()), | ||
|  |                            integer::gcd(a.denominator(), b.denominator())); | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | } // namespace integer | ||
|  | 
 | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | #endif  // BOOST_RATIONAL_HPP |