203 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			203 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_Y1_HPP | ||
|  | #define BOOST_MATH_BESSEL_Y1_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4702) // Unreachable code (release mode only warning) | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/detail/bessel_j1.hpp> | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/assert.hpp> | ||
|  | 
 | ||
|  | // Bessel function of the second kind of order one | ||
|  | // x <= 8, minimax rational approximations on root-bracketing intervals | ||
|  | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 | ||
|  | 
 | ||
|  | namespace boost { namespace math { namespace detail{ | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_y1(T x, const Policy&); | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | struct bessel_y1_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          do_init(); | ||
|  |       } | ||
|  |       static void do_init() | ||
|  |       { | ||
|  |          bessel_y1(T(1), Policy()); | ||
|  |       } | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | const typename bessel_y1_initializer<T, Policy>::init bessel_y1_initializer<T, Policy>::initializer; | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_y1(T x, const Policy& pol) | ||
|  | { | ||
|  |     bessel_y1_initializer<T, Policy>::force_instantiate(); | ||
|  | 
 | ||
|  |     static const T P1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0535726612579544093e+13)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4708611716525426053e+12)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7595974497819597599e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2144548214502560419e+09)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9157479997408395984e+07)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2157953222280260820e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1714424660046133456e+02)), | ||
|  |     }; | ||
|  |     static const T Q1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0737873921079286084e+14)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1272286200406461981e+12)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7800352738690585613e+10)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2250435122182963220e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8136470753052572164e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.2079908168393867438e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T P2[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1514276357909013326e+19)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.6808094574724204577e+18)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3638408497043134724e+16)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0686275289804744814e+15)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9530713129741981618e+13)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7453673962438488783e+11)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1957961912070617006e+09)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9153806858264202986e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2337180442012953128e+03)), | ||
|  |     }; | ||
|  |     static const T Q2[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3321844313316185697e+20)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.6968198822857178911e+18)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0837179548112881950e+16)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1187010065856971027e+14)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0221766852960403645e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.3550318087088919566e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0453748201934079734e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2855164849321609336e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T PC[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), | ||
|  |     }; | ||
|  |     static const T QC[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T PS[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), | ||
|  |     }; | ||
|  |     static const T QS[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1971413260310170351e+00)), | ||
|  |                    x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4296810407941351328e+00)), | ||
|  |                    x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.620e+02)), | ||
|  |                    x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8288260310170351490e-03)), | ||
|  |                    x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3900e+03)), | ||
|  |                    x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.4592058648672279948e-06)) | ||
|  |     ; | ||
|  |     T value, factor, r, rc, rs; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  |     using namespace boost::math::constants; | ||
|  | 
 | ||
|  |     if (x <= 0) | ||
|  |     { | ||
|  |        return policies::raise_domain_error<T>("bost::math::bessel_y1<%1%>(%1%,%1%)", | ||
|  |             "Got x == %1%, but x must be > 0, complex result not supported.", x, pol); | ||
|  |     } | ||
|  |     if (x <= 4)                       // x in (0, 4] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         T z = 2 * log(x/x1) * bessel_j1(x) / pi<T>(); | ||
|  |         r = evaluate_rational(P1, Q1, y); | ||
|  |         factor = (x + x1) * ((x - x11/256) - x12) / x; | ||
|  |         value = z + factor * r; | ||
|  |     } | ||
|  |     else if (x <= 8)                  // x in (4, 8] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         T z = 2 * log(x/x2) * bessel_j1(x) / pi<T>(); | ||
|  |         r = evaluate_rational(P2, Q2, y); | ||
|  |         factor = (x + x2) * ((x - x21/256) - x22) / x; | ||
|  |         value = z + factor * r; | ||
|  |     } | ||
|  |     else                                // x in (8, \infty) | ||
|  |     { | ||
|  |         T y = 8 / x; | ||
|  |         T y2 = y * y; | ||
|  |         rc = evaluate_rational(PC, QC, y2); | ||
|  |         rs = evaluate_rational(PS, QS, y2); | ||
|  |         factor = 1 / (sqrt(x) * root_pi<T>()); | ||
|  |         // | ||
|  |         // This code is really just: | ||
|  |         // | ||
|  |         // T z = x - 0.75f * pi<T>(); | ||
|  |         // value = factor * (rc * sin(z) + y * rs * cos(z)); | ||
|  |         // | ||
|  |         // But using the sin/cos addition rules, plus constants for sin/cos of 3PI/4 | ||
|  |         // which then cancel out with corresponding terms in "factor". | ||
|  |         // | ||
|  |         T sx = sin(x); | ||
|  |         T cx = cos(x); | ||
|  |         value = factor * (y * rs * (sx - cx) - rc * (sx + cx)); | ||
|  |     } | ||
|  | 
 | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_Y1_HPP | ||
|  | 
 |