831 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			831 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | // | ||
|  | //  Copyright (c) 2000-2002 | ||
|  | //  Joerg Walter, Mathias Koch | ||
|  | // | ||
|  | //  Distributed under the Boost Software License, Version 1.0. (See | ||
|  | //  accompanying file LICENSE_1_0.txt or copy at | ||
|  | //  http://www.boost.org/LICENSE_1_0.txt) | ||
|  | // | ||
|  | //  The authors gratefully acknowledge the support of | ||
|  | //  GeNeSys mbH & Co. KG in producing this work. | ||
|  | // | ||
|  | 
 | ||
|  | #ifndef _BOOST_UBLAS_OPERATION_ | ||
|  | #define _BOOST_UBLAS_OPERATION_ | ||
|  | 
 | ||
|  | #include <boost/numeric/ublas/matrix_proxy.hpp> | ||
|  | 
 | ||
|  | /** \file operation.hpp | ||
|  |  *  \brief This file contains some specialized products. | ||
|  |  */ | ||
|  | 
 | ||
|  | // axpy-based products | ||
|  | // Alexei Novakov had a lot of ideas to improve these. Thanks. | ||
|  | // Hendrik Kueck proposed some new kernel. Thanks again. | ||
|  | 
 | ||
|  | namespace boost { namespace numeric { namespace ublas { | ||
|  | 
 | ||
|  |     template<class V, class T1, class L1, class IA1, class TA1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, row_major_tag) { | ||
|  |         typedef typename V::size_type size_type; | ||
|  |         typedef typename V::value_type value_type; | ||
|  | 
 | ||
|  |         for (size_type i = 0; i < e1.filled1 () -1; ++ i) { | ||
|  |             size_type begin = e1.index1_data () [i]; | ||
|  |             size_type end = e1.index1_data () [i + 1]; | ||
|  |             value_type t (v (i)); | ||
|  |             for (size_type j = begin; j < end; ++ j) | ||
|  |                 t += e1.value_data () [j] * e2 () (e1.index2_data () [j]); | ||
|  |             v (i) = t; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class T1, class L1, class IA1, class TA1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, column_major_tag) { | ||
|  |         typedef typename V::size_type size_type; | ||
|  | 
 | ||
|  |         for (size_type j = 0; j < e1.filled1 () -1; ++ j) { | ||
|  |             size_type begin = e1.index1_data () [j]; | ||
|  |             size_type end = e1.index1_data () [j + 1]; | ||
|  |             for (size_type i = begin; i < end; ++ i) | ||
|  |                 v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j); | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Dispatcher | ||
|  |     template<class V, class T1, class L1, class IA1, class TA1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, bool init = true) { | ||
|  |         typedef typename V::value_type value_type; | ||
|  |         typedef typename L1::orientation_category orientation_category; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             v.assign (zero_vector<value_type> (e1.size1 ())); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         vector<value_type> cv (v); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2)); | ||
|  | #endif | ||
|  |         axpy_prod (e1, e2, v, orientation_category ()); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return v; | ||
|  |     } | ||
|  |     template<class V, class T1, class L1, class IA1, class TA1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V | ||
|  |     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1, | ||
|  |                const vector_expression<E2> &e2) { | ||
|  |         typedef V vector_type; | ||
|  | 
 | ||
|  |         vector_type v (e1.size1 ()); | ||
|  |         return axpy_prod (e1, e2, v, true); | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class T1, class L1, class IA1, class TA1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const coordinate_matrix<T1, L1, 0, IA1, TA1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, bool init = true) { | ||
|  |         typedef typename V::size_type size_type; | ||
|  |         typedef typename V::value_type value_type; | ||
|  |         typedef L1 layout_type; | ||
|  | 
 | ||
|  |         size_type size1 = e1.size1(); | ||
|  |         size_type size2 = e1.size2(); | ||
|  | 
 | ||
|  |         if (init) { | ||
|  |             noalias(v) = zero_vector<value_type>(size1); | ||
|  |         } | ||
|  | 
 | ||
|  |         for (size_type i = 0; i < e1.nnz(); ++i) { | ||
|  |             size_type row_index = layout_type::index_M( e1.index1_data () [i], e1.index2_data () [i] ); | ||
|  |             size_type col_index = layout_type::index_m( e1.index1_data () [i], e1.index2_data () [i] ); | ||
|  |             v( row_index ) += e1.value_data () [i] * e2 () (col_index); | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, packed_random_access_iterator_tag, row_major_tag) { | ||
|  |         typedef const E1 expression1_type; | ||
|  |         typedef typename V::size_type size_type; | ||
|  | 
 | ||
|  |         typename expression1_type::const_iterator1 it1 (e1 ().begin1 ()); | ||
|  |         typename expression1_type::const_iterator1 it1_end (e1 ().end1 ()); | ||
|  |         while (it1 != it1_end) { | ||
|  |             size_type index1 (it1.index1 ()); | ||
|  | #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION | ||
|  |             typename expression1_type::const_iterator2 it2 (it1.begin ()); | ||
|  |             typename expression1_type::const_iterator2 it2_end (it1.end ()); | ||
|  | #else | ||
|  |             typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ())); | ||
|  |             typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ())); | ||
|  | #endif | ||
|  |             while (it2 != it2_end) { | ||
|  |                 v (index1) += *it2 * e2 () (it2.index2 ()); | ||
|  |                 ++ it2; | ||
|  |             } | ||
|  |             ++ it1; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, packed_random_access_iterator_tag, column_major_tag) { | ||
|  |         typedef const E1 expression1_type; | ||
|  |         typedef typename V::size_type size_type; | ||
|  | 
 | ||
|  |         typename expression1_type::const_iterator2 it2 (e1 ().begin2 ()); | ||
|  |         typename expression1_type::const_iterator2 it2_end (e1 ().end2 ()); | ||
|  |         while (it2 != it2_end) { | ||
|  |             size_type index2 (it2.index2 ()); | ||
|  | #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION | ||
|  |             typename expression1_type::const_iterator1 it1 (it2.begin ()); | ||
|  |             typename expression1_type::const_iterator1 it1_end (it2.end ()); | ||
|  | #else | ||
|  |             typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ())); | ||
|  |             typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ())); | ||
|  | #endif | ||
|  |             while (it1 != it1_end) { | ||
|  |                 v (it1.index1 ()) += *it1 * e2 () (index2); | ||
|  |                 ++ it1; | ||
|  |             } | ||
|  |             ++ it2; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, sparse_bidirectional_iterator_tag) { | ||
|  |         typedef const E2 expression2_type; | ||
|  | 
 | ||
|  |         typename expression2_type::const_iterator it (e2 ().begin ()); | ||
|  |         typename expression2_type::const_iterator it_end (e2 ().end ()); | ||
|  |         while (it != it_end) { | ||
|  |             v.plus_assign (column (e1 (), it.index ()) * *it); | ||
|  |             ++ it; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Dispatcher | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, packed_random_access_iterator_tag) { | ||
|  |         typedef typename E1::orientation_category orientation_category; | ||
|  |         return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ()); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an | ||
|  |           optimized fashion. | ||
|  | 
 | ||
|  |           \param e1 the matrix expression \c A | ||
|  |           \param e2 the vector expression \c x | ||
|  |           \param v  the result vector \c v | ||
|  |           \param init a boolean parameter | ||
|  | 
 | ||
|  |           <tt>axpy_prod(A, x, v, init)</tt> implements the well known | ||
|  |           axpy-product.  Setting \a init to \c true is equivalent to call | ||
|  |           <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init | ||
|  |           defaults to \c true, but this may change in the future. | ||
|  | 
 | ||
|  |           Up to now there are some specialisation for compressed | ||
|  |           matrices that give a large speed up compared to prod. | ||
|  |            | ||
|  |           \ingroup blas2 | ||
|  | 
 | ||
|  |           \internal | ||
|  |            | ||
|  |           template parameters: | ||
|  |           \param V type of the result vector \c v | ||
|  |           \param E1 type of a matrix expression \c A | ||
|  |           \param E2 type of a vector expression \c x | ||
|  |   */ | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const vector_expression<E2> &e2, | ||
|  |                V &v, bool init = true) { | ||
|  |         typedef typename V::value_type value_type; | ||
|  |         typedef typename E2::const_iterator::iterator_category iterator_category; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             v.assign (zero_vector<value_type> (e1 ().size1 ())); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         vector<value_type> cv (v); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2)); | ||
|  | #endif | ||
|  |         axpy_prod (e1, e2, v, iterator_category ()); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return v; | ||
|  |     } | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const vector_expression<E2> &e2) { | ||
|  |         typedef V vector_type; | ||
|  | 
 | ||
|  |         vector_type v (e1 ().size1 ()); | ||
|  |         return axpy_prod (e1, e2, v, true); | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class T2, class IA2, class TA2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const compressed_matrix<T2, column_major, 0, IA2, TA2> &e2, | ||
|  |                V &v, column_major_tag) { | ||
|  |         typedef typename V::size_type size_type; | ||
|  |         typedef typename V::value_type value_type; | ||
|  | 
 | ||
|  |         for (size_type j = 0; j < e2.filled1 () -1; ++ j) { | ||
|  |             size_type begin = e2.index1_data () [j]; | ||
|  |             size_type end = e2.index1_data () [j + 1]; | ||
|  |             value_type t (v (j)); | ||
|  |             for (size_type i = begin; i < end; ++ i) | ||
|  |                 t += e2.value_data () [i] * e1 () (e2.index2_data () [i]); | ||
|  |             v (j) = t; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class T2, class IA2, class TA2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2, | ||
|  |                V &v, row_major_tag) { | ||
|  |         typedef typename V::size_type size_type; | ||
|  | 
 | ||
|  |         for (size_type i = 0; i < e2.filled1 () -1; ++ i) { | ||
|  |             size_type begin = e2.index1_data () [i]; | ||
|  |             size_type end = e2.index1_data () [i + 1]; | ||
|  |             for (size_type j = begin; j < end; ++ j) | ||
|  |                 v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i); | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Dispatcher | ||
|  |     template<class V, class E1, class T2, class L2, class IA2, class TA2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const compressed_matrix<T2, L2, 0, IA2, TA2> &e2, | ||
|  |                V &v, bool init = true) { | ||
|  |         typedef typename V::value_type value_type; | ||
|  |         typedef typename L2::orientation_category orientation_category; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             v.assign (zero_vector<value_type> (e2.size2 ())); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         vector<value_type> cv (v); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2)); | ||
|  | #endif | ||
|  |         axpy_prod (e1, e2, v, orientation_category ()); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return v; | ||
|  |     } | ||
|  |     template<class V, class E1, class T2, class L2, class IA2, class TA2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) { | ||
|  |         typedef V vector_type; | ||
|  | 
 | ||
|  |         vector_type v (e2.size2 ()); | ||
|  |         return axpy_prod (e1, e2, v, true); | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                V &v, packed_random_access_iterator_tag, column_major_tag) { | ||
|  |         typedef const E2 expression2_type; | ||
|  |         typedef typename V::size_type size_type; | ||
|  | 
 | ||
|  |         typename expression2_type::const_iterator2 it2 (e2 ().begin2 ()); | ||
|  |         typename expression2_type::const_iterator2 it2_end (e2 ().end2 ()); | ||
|  |         while (it2 != it2_end) { | ||
|  |             size_type index2 (it2.index2 ()); | ||
|  | #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION | ||
|  |             typename expression2_type::const_iterator1 it1 (it2.begin ()); | ||
|  |             typename expression2_type::const_iterator1 it1_end (it2.end ()); | ||
|  | #else | ||
|  |             typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ())); | ||
|  |             typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ())); | ||
|  | #endif | ||
|  |             while (it1 != it1_end) { | ||
|  |                 v (index2) += *it1 * e1 () (it1.index1 ()); | ||
|  |                 ++ it1; | ||
|  |             } | ||
|  |             ++ it2; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                V &v, packed_random_access_iterator_tag, row_major_tag) { | ||
|  |         typedef const E2 expression2_type; | ||
|  |         typedef typename V::size_type size_type; | ||
|  | 
 | ||
|  |         typename expression2_type::const_iterator1 it1 (e2 ().begin1 ()); | ||
|  |         typename expression2_type::const_iterator1 it1_end (e2 ().end1 ()); | ||
|  |         while (it1 != it1_end) { | ||
|  |             size_type index1 (it1.index1 ()); | ||
|  | #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION | ||
|  |             typename expression2_type::const_iterator2 it2 (it1.begin ()); | ||
|  |             typename expression2_type::const_iterator2 it2_end (it1.end ()); | ||
|  | #else | ||
|  |             typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ())); | ||
|  |             typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ())); | ||
|  | #endif | ||
|  |             while (it2 != it2_end) { | ||
|  |                 v (it2.index2 ()) += *it2 * e1 () (index1); | ||
|  |                 ++ it2; | ||
|  |             } | ||
|  |             ++ it1; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                V &v, sparse_bidirectional_iterator_tag) { | ||
|  |         typedef const E1 expression1_type; | ||
|  | 
 | ||
|  |         typename expression1_type::const_iterator it (e1 ().begin ()); | ||
|  |         typename expression1_type::const_iterator it_end (e1 ().end ()); | ||
|  |         while (it != it_end) { | ||
|  |             v.plus_assign (*it * row (e2 (), it.index ())); | ||
|  |             ++ it; | ||
|  |         } | ||
|  |         return v; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Dispatcher | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                V &v, packed_random_access_iterator_tag) { | ||
|  |         typedef typename E2::orientation_category orientation_category; | ||
|  |         return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ()); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an | ||
|  |           optimized fashion. | ||
|  | 
 | ||
|  |           \param e1 the vector expression \c x | ||
|  |           \param e2 the matrix expression \c A | ||
|  |           \param v  the result vector \c v | ||
|  |           \param init a boolean parameter | ||
|  | 
 | ||
|  |           <tt>axpy_prod(x, A, v, init)</tt> implements the well known | ||
|  |           axpy-product.  Setting \a init to \c true is equivalent to call | ||
|  |           <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init | ||
|  |           defaults to \c true, but this may change in the future. | ||
|  | 
 | ||
|  |           Up to now there are some specialisation for compressed | ||
|  |           matrices that give a large speed up compared to prod. | ||
|  |            | ||
|  |           \ingroup blas2 | ||
|  | 
 | ||
|  |           \internal | ||
|  |            | ||
|  |           template parameters: | ||
|  |           \param V type of the result vector \c v | ||
|  |           \param E1 type of a vector expression \c x | ||
|  |           \param E2 type of a matrix expression \c A | ||
|  |   */ | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V & | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                V &v, bool init = true) { | ||
|  |         typedef typename V::value_type value_type; | ||
|  |         typedef typename E1::const_iterator::iterator_category iterator_category; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             v.assign (zero_vector<value_type> (e2 ().size2 ())); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         vector<value_type> cv (v); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2)); | ||
|  | #endif | ||
|  |         axpy_prod (e1, e2, v, iterator_category ()); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return v; | ||
|  |     } | ||
|  |     template<class V, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     V | ||
|  |     axpy_prod (const vector_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2) { | ||
|  |         typedef V vector_type; | ||
|  | 
 | ||
|  |         vector_type v (e2 ().size2 ()); | ||
|  |         return axpy_prod (e1, e2, v, true); | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class M, class E1, class E2, class TRI> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                M &m, TRI, | ||
|  |                dense_proxy_tag, row_major_tag) { | ||
|  | 
 | ||
|  |         typedef typename M::size_type size_type; | ||
|  | 
 | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         matrix<value_type, row_major> cm (m); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ()); | ||
|  | #endif | ||
|  |         size_type size1 (e1 ().size1 ()); | ||
|  |         size_type size2 (e1 ().size2 ()); | ||
|  |         for (size_type i = 0; i < size1; ++ i) | ||
|  |             for (size_type j = 0; j < size2; ++ j) | ||
|  |                 row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j)); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return m; | ||
|  |     } | ||
|  |     template<class M, class E1, class E2, class TRI> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                M &m, TRI, | ||
|  |                sparse_proxy_tag, row_major_tag) { | ||
|  | 
 | ||
|  |         typedef TRI triangular_restriction; | ||
|  |         typedef const E1 expression1_type; | ||
|  |         typedef const E2 expression2_type; | ||
|  | 
 | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         matrix<value_type, row_major> cm (m); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ()); | ||
|  | #endif | ||
|  |         typename expression1_type::const_iterator1 it1 (e1 ().begin1 ()); | ||
|  |         typename expression1_type::const_iterator1 it1_end (e1 ().end1 ()); | ||
|  |         while (it1 != it1_end) { | ||
|  | #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION | ||
|  |             typename expression1_type::const_iterator2 it2 (it1.begin ()); | ||
|  |             typename expression1_type::const_iterator2 it2_end (it1.end ()); | ||
|  | #else | ||
|  |             typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ())); | ||
|  |             typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ())); | ||
|  | #endif | ||
|  |             while (it2 != it2_end) { | ||
|  |                 // row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ())); | ||
|  |                 matrix_row<expression2_type> mr (e2 (), it2.index2 ()); | ||
|  |                 typename matrix_row<expression2_type>::const_iterator itr (mr.begin ()); | ||
|  |                 typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ()); | ||
|  |                 while (itr != itr_end) { | ||
|  |                     if (triangular_restriction::other (it1.index1 (), itr.index ())) | ||
|  |                         m (it1.index1 (), itr.index ()) += *it2 * *itr; | ||
|  |                     ++ itr; | ||
|  |                 } | ||
|  |                 ++ it2; | ||
|  |             } | ||
|  |             ++ it1; | ||
|  |         } | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return m; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class M, class E1, class E2, class TRI> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                M &m, TRI, | ||
|  |                dense_proxy_tag, column_major_tag) { | ||
|  |         typedef typename M::size_type size_type; | ||
|  | 
 | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         matrix<value_type, column_major> cm (m); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ()); | ||
|  | #endif | ||
|  |         size_type size1 (e2 ().size1 ()); | ||
|  |         size_type size2 (e2 ().size2 ()); | ||
|  |         for (size_type j = 0; j < size2; ++ j) | ||
|  |             for (size_type i = 0; i < size1; ++ i) | ||
|  |                 column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i)); | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return m; | ||
|  |     } | ||
|  |     template<class M, class E1, class E2, class TRI> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                M &m, TRI, | ||
|  |                sparse_proxy_tag, column_major_tag) { | ||
|  |         typedef TRI triangular_restriction; | ||
|  |         typedef const E1 expression1_type; | ||
|  |         typedef const E2 expression2_type; | ||
|  | 
 | ||
|  | 
 | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         matrix<value_type, column_major> cm (m); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ()); | ||
|  | #endif | ||
|  |         typename expression2_type::const_iterator2 it2 (e2 ().begin2 ()); | ||
|  |         typename expression2_type::const_iterator2 it2_end (e2 ().end2 ()); | ||
|  |         while (it2 != it2_end) { | ||
|  | #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION | ||
|  |             typename expression2_type::const_iterator1 it1 (it2.begin ()); | ||
|  |             typename expression2_type::const_iterator1 it1_end (it2.end ()); | ||
|  | #else | ||
|  |             typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ())); | ||
|  |             typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ())); | ||
|  | #endif | ||
|  |             while (it1 != it1_end) { | ||
|  |                 // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ())); | ||
|  |                 matrix_column<expression1_type> mc (e1 (), it1.index1 ()); | ||
|  |                 typename matrix_column<expression1_type>::const_iterator itc (mc.begin ()); | ||
|  |                 typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ()); | ||
|  |                 while (itc != itc_end) { | ||
|  |                     if(triangular_restriction::other (itc.index (), it2.index2 ())) | ||
|  |                        m (itc.index (), it2.index2 ()) += *it1 * *itc; | ||
|  |                     ++ itc; | ||
|  |                 } | ||
|  |                 ++ it1; | ||
|  |             } | ||
|  |             ++ it2; | ||
|  |         } | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return m; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Dispatcher | ||
|  |     template<class M, class E1, class E2, class TRI> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                M &m, TRI, bool init = true) { | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         typedef typename M::storage_category storage_category; | ||
|  |         typedef typename M::orientation_category orientation_category; | ||
|  |         typedef TRI triangular_restriction; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ())); | ||
|  |         return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ()); | ||
|  |     } | ||
|  |     template<class M, class E1, class E2, class TRI> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                TRI) { | ||
|  |         typedef M matrix_type; | ||
|  |         typedef TRI triangular_restriction; | ||
|  | 
 | ||
|  |         matrix_type m (e1 ().size1 (), e2 ().size2 ()); | ||
|  |         return axpy_prod (e1, e2, m, triangular_restriction (), true); | ||
|  |     } | ||
|  | 
 | ||
|  |   /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an | ||
|  |           optimized fashion. | ||
|  | 
 | ||
|  |           \param e1 the matrix expression \c A | ||
|  |           \param e2 the matrix expression \c X | ||
|  |           \param m  the result matrix \c M | ||
|  |           \param init a boolean parameter | ||
|  | 
 | ||
|  |           <tt>axpy_prod(A, X, M, init)</tt> implements the well known | ||
|  |           axpy-product.  Setting \a init to \c true is equivalent to call | ||
|  |           <tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init | ||
|  |           defaults to \c true, but this may change in the future. | ||
|  | 
 | ||
|  |           Up to now there are no specialisations. | ||
|  |            | ||
|  |           \ingroup blas3 | ||
|  | 
 | ||
|  |           \internal | ||
|  |            | ||
|  |           template parameters: | ||
|  |           \param M type of the result matrix \c M | ||
|  |           \param E1 type of a matrix expression \c A | ||
|  |           \param E2 type of a matrix expression \c X | ||
|  |   */ | ||
|  |     template<class M, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2, | ||
|  |                M &m, bool init = true) { | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         typedef typename M::storage_category storage_category; | ||
|  |         typedef typename M::orientation_category orientation_category; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ())); | ||
|  |         return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ()); | ||
|  |     } | ||
|  |     template<class M, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M | ||
|  |     axpy_prod (const matrix_expression<E1> &e1, | ||
|  |                const matrix_expression<E2> &e2) { | ||
|  |         typedef M matrix_type; | ||
|  | 
 | ||
|  |         matrix_type m (e1 ().size1 (), e2 ().size2 ()); | ||
|  |         return axpy_prod (e1, e2, m, full (), true); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     template<class M, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     opb_prod (const matrix_expression<E1> &e1, | ||
|  |               const matrix_expression<E2> &e2, | ||
|  |               M &m, | ||
|  |               dense_proxy_tag, row_major_tag) { | ||
|  |         typedef typename M::size_type size_type; | ||
|  |         typedef typename M::value_type value_type; | ||
|  | 
 | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         matrix<value_type, row_major> cm (m); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ()); | ||
|  | #endif | ||
|  |         size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ())); | ||
|  |         for (size_type k = 0; k < size; ++ k) { | ||
|  |             vector<value_type> ce1 (column (e1 (), k)); | ||
|  |             vector<value_type> re2 (row (e2 (), k)); | ||
|  |             m.plus_assign (outer_prod (ce1, re2)); | ||
|  |         } | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return m; | ||
|  |     } | ||
|  | 
 | ||
|  |     template<class M, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     opb_prod (const matrix_expression<E1> &e1, | ||
|  |               const matrix_expression<E2> &e2, | ||
|  |               M &m, | ||
|  |               dense_proxy_tag, column_major_tag) { | ||
|  |         typedef typename M::size_type size_type; | ||
|  |         typedef typename M::value_type value_type; | ||
|  | 
 | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         matrix<value_type, column_major> cm (m); | ||
|  |         typedef typename type_traits<value_type>::real_type real_type; | ||
|  |         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); | ||
|  |         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ()); | ||
|  | #endif | ||
|  |         size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ())); | ||
|  |         for (size_type k = 0; k < size; ++ k) { | ||
|  |             vector<value_type> ce1 (column (e1 (), k)); | ||
|  |             vector<value_type> re2 (row (e2 (), k)); | ||
|  |             m.plus_assign (outer_prod (ce1, re2)); | ||
|  |         } | ||
|  | #if BOOST_UBLAS_TYPE_CHECK | ||
|  |         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ()); | ||
|  | #endif | ||
|  |         return m; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Dispatcher | ||
|  | 
 | ||
|  |   /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an | ||
|  |           optimized fashion. | ||
|  | 
 | ||
|  |           \param e1 the matrix expression \c A | ||
|  |           \param e2 the matrix expression \c X | ||
|  |           \param m  the result matrix \c M | ||
|  |           \param init a boolean parameter | ||
|  | 
 | ||
|  |           <tt>opb_prod(A, X, M, init)</tt> implements the well known | ||
|  |           axpy-product. Setting \a init to \c true is equivalent to call | ||
|  |           <tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init | ||
|  |           defaults to \c true, but this may change in the future. | ||
|  | 
 | ||
|  |           This function may give a speedup if \c A has less columns than | ||
|  |           rows, because the product is computed as a sum of outer | ||
|  |           products. | ||
|  |            | ||
|  |           \ingroup blas3 | ||
|  | 
 | ||
|  |           \internal | ||
|  |            | ||
|  |           template parameters: | ||
|  |           \param M type of the result matrix \c M | ||
|  |           \param E1 type of a matrix expression \c A | ||
|  |           \param E2 type of a matrix expression \c X | ||
|  |   */ | ||
|  |     template<class M, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M & | ||
|  |     opb_prod (const matrix_expression<E1> &e1, | ||
|  |               const matrix_expression<E2> &e2, | ||
|  |               M &m, bool init = true) { | ||
|  |         typedef typename M::value_type value_type; | ||
|  |         typedef typename M::storage_category storage_category; | ||
|  |         typedef typename M::orientation_category orientation_category; | ||
|  | 
 | ||
|  |         if (init) | ||
|  |             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ())); | ||
|  |         return opb_prod (e1, e2, m, storage_category (), orientation_category ()); | ||
|  |     } | ||
|  |     template<class M, class E1, class E2> | ||
|  |     BOOST_UBLAS_INLINE | ||
|  |     M | ||
|  |     opb_prod (const matrix_expression<E1> &e1, | ||
|  |               const matrix_expression<E2> &e2) { | ||
|  |         typedef M matrix_type; | ||
|  | 
 | ||
|  |         matrix_type m (e1 ().size1 (), e2 ().size2 ()); | ||
|  |         return opb_prod (e1, e2, m, true); | ||
|  |     } | ||
|  | 
 | ||
|  | }}} | ||
|  | 
 | ||
|  | #endif |