246 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			246 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  (C) Copyright John Maddock 2005. | ||
|  | //  Distributed under the Boost Software License, Version 1.0. (See accompanying | ||
|  | //  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED | ||
|  | #define BOOST_MATH_COMPLEX_ACOS_INCLUDED | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED | ||
|  | #  include <boost/math/complex/details.hpp> | ||
|  | #endif | ||
|  | #ifndef BOOST_MATH_LOG1P_INCLUDED | ||
|  | #  include <boost/math/special_functions/log1p.hpp> | ||
|  | #endif | ||
|  | #include <boost/assert.hpp> | ||
|  | 
 | ||
|  | #ifdef BOOST_NO_STDC_NAMESPACE | ||
|  | namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } | ||
|  | #endif | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ | ||
|  | 
 | ||
|  | template<class T>  | ||
|  | std::complex<T> acos(const std::complex<T>& z) | ||
|  | { | ||
|  |    // | ||
|  |    // This implementation is a transcription of the pseudo-code in: | ||
|  |    // | ||
|  |    // "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling." | ||
|  |    // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang. | ||
|  |    // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997. | ||
|  |    // | ||
|  | 
 | ||
|  |    // | ||
|  |    // These static constants should really be in a maths constants library, | ||
|  |    // note that we have tweaked a_crossover as per: https://svn.boost.org/trac/boost/ticket/7290 | ||
|  |    // | ||
|  |    static const T one = static_cast<T>(1); | ||
|  |    //static const T two = static_cast<T>(2); | ||
|  |    static const T half = static_cast<T>(0.5L); | ||
|  |    static const T a_crossover = static_cast<T>(10); | ||
|  |    static const T b_crossover = static_cast<T>(0.6417L); | ||
|  |    static const T s_pi = boost::math::constants::pi<T>(); | ||
|  |    static const T half_pi = s_pi / 2; | ||
|  |    static const T log_two = boost::math::constants::ln_two<T>(); | ||
|  |    static const T quarter_pi = s_pi / 4; | ||
|  |     | ||
|  | #ifdef BOOST_MSVC | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4127) | ||
|  | #endif | ||
|  |    // | ||
|  |    // Get real and imaginary parts, discard the signs as we can  | ||
|  |    // figure out the sign of the result later: | ||
|  |    // | ||
|  |    T x = std::fabs(z.real()); | ||
|  |    T y = std::fabs(z.imag()); | ||
|  | 
 | ||
|  |    T real, imag; // these hold our result | ||
|  | 
 | ||
|  |    //  | ||
|  |    // Handle special cases specified by the C99 standard, | ||
|  |    // many of these special cases aren't really needed here, | ||
|  |    // but doing it this way prevents overflow/underflow arithmetic | ||
|  |    // in the main body of the logic, which may trip up some machines: | ||
|  |    // | ||
|  |    if((boost::math::isinf)(x)) | ||
|  |    { | ||
|  |       if((boost::math::isinf)(y)) | ||
|  |       { | ||
|  |          real = quarter_pi; | ||
|  |          imag = std::numeric_limits<T>::infinity(); | ||
|  |       } | ||
|  |       else if((boost::math::isnan)(y)) | ||
|  |       { | ||
|  |          return std::complex<T>(y, -std::numeric_limits<T>::infinity()); | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // y is not infinity or nan: | ||
|  |          real = 0; | ||
|  |          imag = std::numeric_limits<T>::infinity(); | ||
|  |       } | ||
|  |    } | ||
|  |    else if((boost::math::isnan)(x)) | ||
|  |    { | ||
|  |       if((boost::math::isinf)(y)) | ||
|  |          return std::complex<T>(x, ((boost::math::signbit)(z.imag())) ? std::numeric_limits<T>::infinity() :  -std::numeric_limits<T>::infinity()); | ||
|  |       return std::complex<T>(x, x); | ||
|  |    } | ||
|  |    else if((boost::math::isinf)(y)) | ||
|  |    { | ||
|  |       real = half_pi; | ||
|  |       imag = std::numeric_limits<T>::infinity(); | ||
|  |    } | ||
|  |    else if((boost::math::isnan)(y)) | ||
|  |    { | ||
|  |       return std::complex<T>((x == 0) ? half_pi : y, y); | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // What follows is the regular Hull et al code, | ||
|  |       // begin with the special case for real numbers: | ||
|  |       // | ||
|  |       if((y == 0) && (x <= one)) | ||
|  |          return std::complex<T>((x == 0) ? half_pi : std::acos(z.real()), (boost::math::changesign)(z.imag())); | ||
|  |       // | ||
|  |       // Figure out if our input is within the "safe area" identified by Hull et al. | ||
|  |       // This would be more efficient with portable floating point exception handling; | ||
|  |       // fortunately the quantities M and u identified by Hull et al (figure 3),  | ||
|  |       // match with the max and min methods of numeric_limits<T>. | ||
|  |       // | ||
|  |       T safe_max = detail::safe_max(static_cast<T>(8)); | ||
|  |       T safe_min = detail::safe_min(static_cast<T>(4)); | ||
|  | 
 | ||
|  |       T xp1 = one + x; | ||
|  |       T xm1 = x - one; | ||
|  | 
 | ||
|  |       if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min)) | ||
|  |       { | ||
|  |          T yy = y * y; | ||
|  |          T r = std::sqrt(xp1*xp1 + yy); | ||
|  |          T s = std::sqrt(xm1*xm1 + yy); | ||
|  |          T a = half * (r + s); | ||
|  |          T b = x / a; | ||
|  | 
 | ||
|  |          if(b <= b_crossover) | ||
|  |          { | ||
|  |             real = std::acos(b); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             T apx = a + x; | ||
|  |             if(x <= one) | ||
|  |             { | ||
|  |                real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x); | ||
|  |             } | ||
|  |          } | ||
|  | 
 | ||
|  |          if(a <= a_crossover) | ||
|  |          { | ||
|  |             T am1; | ||
|  |             if(x < one) | ||
|  |             { | ||
|  |                am1 = half * (yy/(r + xp1) + yy/(s - xm1)); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                am1 = half * (yy/(r + xp1) + (s + xm1)); | ||
|  |             } | ||
|  |             imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one))); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             imag = std::log(a + std::sqrt(a*a - one)); | ||
|  |          } | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // | ||
|  |          // This is the Hull et al exception handling code from Fig 6 of their paper: | ||
|  |          // | ||
|  |          if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1))) | ||
|  |          { | ||
|  |             if(x < one) | ||
|  |             { | ||
|  |                real = std::acos(x); | ||
|  |                imag = y / std::sqrt(xp1*(one-x)); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                // This deviates from Hull et al's paper as per https://svn.boost.org/trac/boost/ticket/7290 | ||
|  |                if(((std::numeric_limits<T>::max)() / xp1) > xm1) | ||
|  |                { | ||
|  |                   // xp1 * xm1 won't overflow: | ||
|  |                   real = y / std::sqrt(xm1*xp1); | ||
|  |                   imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1)); | ||
|  |                } | ||
|  |                else | ||
|  |                { | ||
|  |                   real = y / x; | ||
|  |                   imag = log_two + std::log(x); | ||
|  |                } | ||
|  |             } | ||
|  |          } | ||
|  |          else if(y <= safe_min) | ||
|  |          { | ||
|  |             // There is an assumption in Hull et al's analysis that | ||
|  |             // if we get here then x == 1.  This is true for all "good" | ||
|  |             // machines where : | ||
|  |             //  | ||
|  |             // E^2 > 8*sqrt(u); with: | ||
|  |             // | ||
|  |             // E =  std::numeric_limits<T>::epsilon() | ||
|  |             // u = (std::numeric_limits<T>::min)() | ||
|  |             // | ||
|  |             // Hull et al provide alternative code for "bad" machines | ||
|  |             // but we have no way to test that here, so for now just assert | ||
|  |             // on the assumption: | ||
|  |             // | ||
|  |             BOOST_ASSERT(x == 1); | ||
|  |             real = std::sqrt(y); | ||
|  |             imag = std::sqrt(y); | ||
|  |          } | ||
|  |          else if(std::numeric_limits<T>::epsilon() * y - one >= x) | ||
|  |          { | ||
|  |             real = half_pi; | ||
|  |             imag = log_two + std::log(y); | ||
|  |          } | ||
|  |          else if(x > one) | ||
|  |          { | ||
|  |             real = std::atan(y/x); | ||
|  |             T xoy = x/y; | ||
|  |             imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             real = half_pi; | ||
|  |             T a = std::sqrt(one + y*y); | ||
|  |             imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a)); | ||
|  |          } | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    // | ||
|  |    // Finish off by working out the sign of the result: | ||
|  |    // | ||
|  |    if((boost::math::signbit)(z.real())) | ||
|  |       real = s_pi - real; | ||
|  |    if(!(boost::math::signbit)(z.imag())) | ||
|  |       imag = (boost::math::changesign)(imag); | ||
|  | 
 | ||
|  |    return std::complex<T>(real, imag); | ||
|  | #ifdef BOOST_MSVC | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  | } | ||
|  | 
 | ||
|  | } } // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED |