636 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			636 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  (C) Copyright John Maddock 2006. | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_SF_DIGAMMA_HPP | ||
|  | #define BOOST_MATH_SF_DIGAMMA_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4702) // Unreachable code (release mode only warning) | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/math_fwd.hpp> | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/series.hpp> | ||
|  | #include <boost/math/tools/promotion.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/mpl/comparison.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | 
 | ||
|  | namespace boost{ | ||
|  | namespace math{ | ||
|  | namespace detail{ | ||
|  | // | ||
|  | // Begin by defining the smallest value for which it is safe to | ||
|  | // use the asymptotic expansion for digamma: | ||
|  | // | ||
|  | inline unsigned digamma_large_lim(const mpl::int_<0>*) | ||
|  | {  return 20;  } | ||
|  | inline unsigned digamma_large_lim(const mpl::int_<113>*) | ||
|  | {  return 20;  } | ||
|  | inline unsigned digamma_large_lim(const void*) | ||
|  | {  return 10;  } | ||
|  | // | ||
|  | // Implementations of the asymptotic expansion come next, | ||
|  | // the coefficients of the series have been evaluated | ||
|  | // in advance at high precision, and the series truncated | ||
|  | // at the first term that's too small to effect the result. | ||
|  | // Note that the series becomes divergent after a while | ||
|  | // so truncation is very important. | ||
|  | // | ||
|  | // This first one gives 34-digit precision for x >= 20: | ||
|  | // | ||
|  | template <class T> | ||
|  | inline T digamma_imp_large(T x, const mpl::int_<113>*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |    static const T P[] = { | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.0083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.003968253968253968253968253968253968253968253968254), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.0041666666666666666666666666666666666666666666666667), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.0075757575757575757575757575757575757575757575757576), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.021092796092796092796092796092796092796092796092796), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.44325980392156862745098039215686274509803921568627), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 3.0539543302701197438039543302701197438039543302701), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -26.456212121212121212121212121212121212121212121212), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 281.4601449275362318840579710144927536231884057971), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -3607.510546398046398046398046398046398046398046398), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 54827.583333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -974936.82385057471264367816091954022988505747126437), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 20052695.796688078946143462272494530559046688078946), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -472384867.72162990196078431372549019607843137254902), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 12635724795.916666666666666666666666666666666666667) | ||
|  |    }; | ||
|  |    x -= 1; | ||
|  |    T result = log(x); | ||
|  |    result += 1 / (2 * x); | ||
|  |    T z = 1 / (x*x); | ||
|  |    result -= z * tools::evaluate_polynomial(P, z); | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // 19-digit precision for x >= 10: | ||
|  | // | ||
|  | template <class T> | ||
|  | inline T digamma_imp_large(T x, const mpl::int_<64>*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |    static const T P[] = { | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.0083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.003968253968253968253968253968253968253968253968254), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.0041666666666666666666666666666666666666666666666667), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.0075757575757575757575757575757575757575757575757576), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.021092796092796092796092796092796092796092796092796), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.44325980392156862745098039215686274509803921568627), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 3.0539543302701197438039543302701197438039543302701), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -26.456212121212121212121212121212121212121212121212), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 281.4601449275362318840579710144927536231884057971), | ||
|  |    }; | ||
|  |    x -= 1; | ||
|  |    T result = log(x); | ||
|  |    result += 1 / (2 * x); | ||
|  |    T z = 1 / (x*x); | ||
|  |    result -= z * tools::evaluate_polynomial(P, z); | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // 17-digit precision for x >= 10: | ||
|  | // | ||
|  | template <class T> | ||
|  | inline T digamma_imp_large(T x, const mpl::int_<53>*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |    static const T P[] = { | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.0083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.003968253968253968253968253968253968253968253968254), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.0041666666666666666666666666666666666666666666666667), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.0075757575757575757575757575757575757575757575757576), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.021092796092796092796092796092796092796092796092796), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.44325980392156862745098039215686274509803921568627) | ||
|  |    }; | ||
|  |    x -= 1; | ||
|  |    T result = log(x); | ||
|  |    result += 1 / (2 * x); | ||
|  |    T z = 1 / (x*x); | ||
|  |    result -= z * tools::evaluate_polynomial(P, z); | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // 9-digit precision for x >= 10: | ||
|  | // | ||
|  | template <class T> | ||
|  | inline T digamma_imp_large(T x, const mpl::int_<24>*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  |    static const T P[] = { | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 24, 0.083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 24, -0.0083333333333333333333333333333333333333333333333333), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 24, 0.003968253968253968253968253968253968253968253968254) | ||
|  |    }; | ||
|  |    x -= 1; | ||
|  |    T result = log(x); | ||
|  |    result += 1 / (2 * x); | ||
|  |    T z = 1 / (x*x); | ||
|  |    result -= z * tools::evaluate_polynomial(P, z); | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // Fully generic asymptotic expansion in terms of Bernoulli numbers, see: | ||
|  | // http://functions.wolfram.com/06.14.06.0012.01 | ||
|  | // | ||
|  | template <class T> | ||
|  | struct digamma_series_func | ||
|  | { | ||
|  | private: | ||
|  |    int k; | ||
|  |    T xx; | ||
|  |    T term; | ||
|  | public: | ||
|  |    digamma_series_func(T x) : k(1), xx(x * x), term(1 / (x * x)) {} | ||
|  |    T operator()() | ||
|  |    { | ||
|  |       T result = term * boost::math::bernoulli_b2n<T>(k) / (2 * k); | ||
|  |       term /= xx; | ||
|  |       ++k; | ||
|  |       return result; | ||
|  |    } | ||
|  |    typedef T result_type; | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline T digamma_imp_large(T x, const Policy& pol, const mpl::int_<0>*) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    digamma_series_func<T> s(x); | ||
|  |    T result = log(x) - 1 / (2 * x); | ||
|  |    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); | ||
|  |    result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, -result); | ||
|  |    result = -result; | ||
|  |    policies::check_series_iterations<T>("boost::math::digamma<%1%>(%1%)", max_iter, pol); | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // Now follow rational approximations over the range [1,2]. | ||
|  | // | ||
|  | // 35-digit precision: | ||
|  | // | ||
|  | template <class T> | ||
|  | T digamma_imp_1_2(T x, const mpl::int_<113>*) | ||
|  | { | ||
|  |    // | ||
|  |    // Now the approximation, we use the form: | ||
|  |    // | ||
|  |    // digamma(x) = (x - root) * (Y + R(x-1)) | ||
|  |    // | ||
|  |    // Where root is the location of the positive root of digamma, | ||
|  |    // Y is a constant, and R is optimised for low absolute error | ||
|  |    // compared to Y. | ||
|  |    // | ||
|  |    // Max error found at 128-bit long double precision:  5.541e-35 | ||
|  |    // Maximum Deviation Found (approximation error):     1.965e-35 | ||
|  |    // | ||
|  |    static const float Y = 0.99558162689208984375F; | ||
|  | 
 | ||
|  |    static const T root1 = T(1569415565) / 1073741824uL; | ||
|  |    static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL; | ||
|  |    static const T root3 = ((T(111616537) / 1073741824uL) / 1073741824uL) / 1073741824uL; | ||
|  |    static const T root4 = (((T(503992070) / 1073741824uL) / 1073741824uL) / 1073741824uL) / 1073741824uL; | ||
|  |    static const T root5 = BOOST_MATH_BIG_CONSTANT(T, 113, 0.52112228569249997894452490385577338504019838794544e-36); | ||
|  | 
 | ||
|  |    static const T P[] = {     | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.25479851061131551526977464225335883769), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.18684290534374944114622235683619897417), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.80360876047931768958995775910991929922), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.67227342794829064330498117008564270136), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.26569010991230617151285010695543858005), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.05775672694575986971640757748003553385), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.0071432147823164975485922555833274240665), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.00048740753910766168912364555706064993274), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.16454996865214115723416538844975174761e-4), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.20327832297631728077731148515093164955e-6) | ||
|  |    }; | ||
|  |    static const T Q[] = {     | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 2.6210924610812025425088411043163287646), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 2.6850757078559596612621337395886392594), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 1.4320913706209965531250495490639289418), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.4410872083455009362557012239501953402), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.081385727399251729505165509278152487225), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089478633066857163432104815183858149496), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.00055861622855066424871506755481997374154), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.1760168552357342401304462967950178554e-4), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.20585454493572473724556649516040874384e-6), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, -0.90745971844439990284514121823069162795e-11), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 113, 0.48857673606545846774761343500033283272e-13), | ||
|  |    }; | ||
|  |    T g = x - root1; | ||
|  |    g -= root2; | ||
|  |    g -= root3; | ||
|  |    g -= root4; | ||
|  |    g -= root5; | ||
|  |    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1)); | ||
|  |    T result = g * Y + g * r; | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // 19-digit precision: | ||
|  | // | ||
|  | template <class T> | ||
|  | T digamma_imp_1_2(T x, const mpl::int_<64>*) | ||
|  | { | ||
|  |    // | ||
|  |    // Now the approximation, we use the form: | ||
|  |    // | ||
|  |    // digamma(x) = (x - root) * (Y + R(x-1)) | ||
|  |    // | ||
|  |    // Where root is the location of the positive root of digamma, | ||
|  |    // Y is a constant, and R is optimised for low absolute error | ||
|  |    // compared to Y. | ||
|  |    // | ||
|  |    // Max error found at 80-bit long double precision:   5.016e-20 | ||
|  |    // Maximum Deviation Found (approximation error):     3.575e-20 | ||
|  |    // | ||
|  |    static const float Y = 0.99558162689208984375F; | ||
|  | 
 | ||
|  |    static const T root1 = T(1569415565) / 1073741824uL; | ||
|  |    static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL; | ||
|  |    static const T root3 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.9016312093258695918615325266959189453125e-19); | ||
|  | 
 | ||
|  |    static const T P[] = {     | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.254798510611315515235), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.314628554532916496608), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.665836341559876230295), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.314767657147375752913), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.0541156266153505273939), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.00289268368333918761452) | ||
|  |    }; | ||
|  |    static const T Q[] = {     | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 2.1195759927055347547), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 1.54350554664961128724), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.486986018231042975162), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.0660481487173569812846), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.00298999662592323990972), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, -0.165079794012604905639e-5), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 64, 0.317940243105952177571e-7) | ||
|  |    }; | ||
|  |    T g = x - root1; | ||
|  |    g -= root2; | ||
|  |    g -= root3; | ||
|  |    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1)); | ||
|  |    T result = g * Y + g * r; | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // 18-digit precision: | ||
|  | // | ||
|  | template <class T> | ||
|  | T digamma_imp_1_2(T x, const mpl::int_<53>*) | ||
|  | { | ||
|  |    // | ||
|  |    // Now the approximation, we use the form: | ||
|  |    // | ||
|  |    // digamma(x) = (x - root) * (Y + R(x-1)) | ||
|  |    // | ||
|  |    // Where root is the location of the positive root of digamma, | ||
|  |    // Y is a constant, and R is optimised for low absolute error | ||
|  |    // compared to Y. | ||
|  |    // | ||
|  |    // Maximum Deviation Found:               1.466e-18 | ||
|  |    // At double precision, max error found:  2.452e-17 | ||
|  |    // | ||
|  |    static const float Y = 0.99558162689208984F; | ||
|  | 
 | ||
|  |    static const T root1 = T(1569415565) / 1073741824uL; | ||
|  |    static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL; | ||
|  |    static const T root3 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.9016312093258695918615325266959189453125e-19); | ||
|  | 
 | ||
|  |    static const T P[] = {     | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.25479851061131551), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.32555031186804491), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.65031853770896507), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.28919126444774784), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.045251321448739056), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.0020713321167745952) | ||
|  |    }; | ||
|  |    static const T Q[] = {     | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 2.0767117023730469), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 1.4606242909763515), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.43593529692665969), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.054151797245674225), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, 0.0021284987017821144), | ||
|  |       BOOST_MATH_BIG_CONSTANT(T, 53, -0.55789841321675513e-6) | ||
|  |    }; | ||
|  |    T g = x - root1; | ||
|  |    g -= root2; | ||
|  |    g -= root3; | ||
|  |    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1)); | ||
|  |    T result = g * Y + g * r; | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // 9-digit precision: | ||
|  | // | ||
|  | template <class T> | ||
|  | inline T digamma_imp_1_2(T x, const mpl::int_<24>*) | ||
|  | { | ||
|  |    // | ||
|  |    // Now the approximation, we use the form: | ||
|  |    // | ||
|  |    // digamma(x) = (x - root) * (Y + R(x-1)) | ||
|  |    // | ||
|  |    // Where root is the location of the positive root of digamma, | ||
|  |    // Y is a constant, and R is optimised for low absolute error | ||
|  |    // compared to Y. | ||
|  |    // | ||
|  |    // Maximum Deviation Found:              3.388e-010 | ||
|  |    // At float precision, max error found:  2.008725e-008 | ||
|  |    // | ||
|  |    static const float Y = 0.99558162689208984f; | ||
|  |    static const T root = 1532632.0f / 1048576; | ||
|  |    static const T root_minor = static_cast<T>(0.3700660185912626595423257213284682051735604e-6L); | ||
|  |    static const T P[] = {     | ||
|  |       0.25479851023250261e0f, | ||
|  |       -0.44981331915268368e0f, | ||
|  |       -0.43916936919946835e0f, | ||
|  |       -0.61041765350579073e-1f | ||
|  |    }; | ||
|  |    static const T Q[] = {     | ||
|  |       0.1e1, | ||
|  |       0.15890202430554952e1f, | ||
|  |       0.65341249856146947e0f, | ||
|  |       0.63851690523355715e-1f | ||
|  |    }; | ||
|  |    T g = x - root; | ||
|  |    g -= root_minor; | ||
|  |    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1)); | ||
|  |    T result = g * Y + g * r; | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Tag, class Policy> | ||
|  | T digamma_imp(T x, const Tag* t, const Policy& pol) | ||
|  | { | ||
|  |    // | ||
|  |    // This handles reflection of negative arguments, and all our | ||
|  |    // error handling, then forwards to the T-specific approximation. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  | 
 | ||
|  |    T result = 0; | ||
|  |    // | ||
|  |    // Check for negative arguments and use reflection: | ||
|  |    // | ||
|  |    if(x <= -1) | ||
|  |    { | ||
|  |       // Reflect: | ||
|  |       x = 1 - x; | ||
|  |       // Argument reduction for tan: | ||
|  |       T remainder = x - floor(x); | ||
|  |       // Shift to negative if > 0.5: | ||
|  |       if(remainder > 0.5) | ||
|  |       { | ||
|  |          remainder -= 1; | ||
|  |       } | ||
|  |       // | ||
|  |       // check for evaluation at a negative pole: | ||
|  |       // | ||
|  |       if(remainder == 0) | ||
|  |       { | ||
|  |          return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); | ||
|  |       } | ||
|  |       result = constants::pi<T>() / tan(constants::pi<T>() * remainder); | ||
|  |    } | ||
|  |    if(x == 0) | ||
|  |       return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, x, pol); | ||
|  |    // | ||
|  |    // If we're above the lower-limit for the | ||
|  |    // asymptotic expansion then use it: | ||
|  |    // | ||
|  |    if(x >= digamma_large_lim(t)) | ||
|  |    { | ||
|  |       result += digamma_imp_large(x, t); | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // If x > 2 reduce to the interval [1,2]: | ||
|  |       // | ||
|  |       while(x > 2) | ||
|  |       { | ||
|  |          x -= 1; | ||
|  |          result += 1/x; | ||
|  |       } | ||
|  |       // | ||
|  |       // If x < 1 use recurrance to shift to > 1: | ||
|  |       // | ||
|  |       while(x < 1) | ||
|  |       { | ||
|  |          result -= 1/x; | ||
|  |          x += 1; | ||
|  |       } | ||
|  |       result += digamma_imp_1_2(x, t); | ||
|  |    } | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T digamma_imp(T x, const mpl::int_<0>* t, const Policy& pol) | ||
|  | { | ||
|  |    // | ||
|  |    // This handles reflection of negative arguments, and all our | ||
|  |    // error handling, then forwards to the T-specific approximation. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  | 
 | ||
|  |    T result = 0; | ||
|  |    // | ||
|  |    // Check for negative arguments and use reflection: | ||
|  |    // | ||
|  |    if(x <= -1) | ||
|  |    { | ||
|  |       // Reflect: | ||
|  |       x = 1 - x; | ||
|  |       // Argument reduction for tan: | ||
|  |       T remainder = x - floor(x); | ||
|  |       // Shift to negative if > 0.5: | ||
|  |       if(remainder > 0.5) | ||
|  |       { | ||
|  |          remainder -= 1; | ||
|  |       } | ||
|  |       // | ||
|  |       // check for evaluation at a negative pole: | ||
|  |       // | ||
|  |       if(remainder == 0) | ||
|  |       { | ||
|  |          return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, (1 - x), pol); | ||
|  |       } | ||
|  |       result = constants::pi<T>() / tan(constants::pi<T>() * remainder); | ||
|  |    } | ||
|  |    if(x == 0) | ||
|  |       return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, x, pol); | ||
|  |    // | ||
|  |    // If we're above the lower-limit for the | ||
|  |    // asymptotic expansion then use it, the | ||
|  |    // limit is a linear interpolation with | ||
|  |    // limit = 10 at 50 bit precision and | ||
|  |    // limit = 250 at 1000 bit precision. | ||
|  |    // | ||
|  |    int lim = 10 + ((tools::digits<T>() - 50) * 240L) / 950; | ||
|  |    T two_x = ldexp(x, 1); | ||
|  |    if(x >= lim) | ||
|  |    { | ||
|  |       result += digamma_imp_large(x, pol, t); | ||
|  |    } | ||
|  |    else if(floor(x) == x) | ||
|  |    { | ||
|  |       // | ||
|  |       // Special case for integer arguments, see | ||
|  |       // http://functions.wolfram.com/06.14.03.0001.01 | ||
|  |       // | ||
|  |       result = -constants::euler<T, Policy>(); | ||
|  |       T val = 1; | ||
|  |       while(val < x) | ||
|  |       { | ||
|  |          result += 1 / val; | ||
|  |          val += 1; | ||
|  |       } | ||
|  |    } | ||
|  |    else if(floor(two_x) == two_x) | ||
|  |    { | ||
|  |       // | ||
|  |       // Special case for half integer arguments, see: | ||
|  |       // http://functions.wolfram.com/06.14.03.0007.01 | ||
|  |       // | ||
|  |       result = -2 * constants::ln_two<T, Policy>() - constants::euler<T, Policy>(); | ||
|  |       int n = itrunc(x); | ||
|  |       if(n) | ||
|  |       { | ||
|  |          for(int k = 1; k < n; ++k) | ||
|  |             result += 1 / T(k); | ||
|  |          for(int k = n; k <= 2 * n - 1; ++k) | ||
|  |             result += 2 / T(k); | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // Rescale so we can use the asymptotic expansion: | ||
|  |       // | ||
|  |       while(x < lim) | ||
|  |       { | ||
|  |          result -= 1 / x; | ||
|  |          x += 1; | ||
|  |       } | ||
|  |       result += digamma_imp_large(x, pol, t); | ||
|  |    } | ||
|  |    return result; | ||
|  | } | ||
|  | // | ||
|  | // Initializer: ensure all our constants are initialized prior to the first call of main: | ||
|  | // | ||
|  | template <class T, class Policy> | ||
|  | struct digamma_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          typedef typename policies::precision<T, Policy>::type precision_type; | ||
|  |          do_init(mpl::bool_<precision_type::value && (precision_type::value <= 113)>()); | ||
|  |       } | ||
|  |       void do_init(const mpl::true_&) | ||
|  |       { | ||
|  |          boost::math::digamma(T(1.5), Policy()); | ||
|  |          boost::math::digamma(T(500), Policy()); | ||
|  |       } | ||
|  |       void do_init(const mpl::false_&){} | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | const typename digamma_initializer<T, Policy>::init digamma_initializer<T, Policy>::initializer; | ||
|  | 
 | ||
|  | } // namespace detail | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline typename tools::promote_args<T>::type  | ||
|  |    digamma(T x, const Policy&) | ||
|  | { | ||
|  |    typedef typename tools::promote_args<T>::type result_type; | ||
|  |    typedef typename policies::evaluation<result_type, Policy>::type value_type; | ||
|  |    typedef typename policies::precision<T, Policy>::type precision_type; | ||
|  |    typedef typename mpl::if_< | ||
|  |       mpl::or_< | ||
|  |          mpl::less_equal<precision_type, mpl::int_<0> >, | ||
|  |          mpl::greater<precision_type, mpl::int_<114> > | ||
|  |       >, | ||
|  |       mpl::int_<0>, | ||
|  |       typename mpl::if_< | ||
|  |          mpl::less<precision_type, mpl::int_<25> >, | ||
|  |          mpl::int_<24>, | ||
|  |          typename mpl::if_< | ||
|  |             mpl::less<precision_type, mpl::int_<54> >, | ||
|  |             mpl::int_<53>, | ||
|  |             typename mpl::if_< | ||
|  |                mpl::less<precision_type, mpl::int_<65> >, | ||
|  |                mpl::int_<64>, | ||
|  |                mpl::int_<113> | ||
|  |             >::type | ||
|  |          >::type | ||
|  |       >::type | ||
|  |    >::type tag_type; | ||
|  | 
 | ||
|  |    typedef typename policies::normalise< | ||
|  |       Policy, | ||
|  |       policies::promote_float<false>, | ||
|  |       policies::promote_double<false>, | ||
|  |       policies::discrete_quantile<>, | ||
|  |       policies::assert_undefined<> >::type forwarding_policy; | ||
|  | 
 | ||
|  |    // Force initialization of constants: | ||
|  |    detail::digamma_initializer<value_type, forwarding_policy>::force_instantiate(); | ||
|  | 
 | ||
|  |    return policies::checked_narrowing_cast<result_type, Policy>(detail::digamma_imp( | ||
|  |       static_cast<value_type>(x), | ||
|  |       static_cast<const tag_type*>(0), forwarding_policy()), "boost::math::digamma<%1%>(%1%)"); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline typename tools::promote_args<T>::type  | ||
|  |    digamma(T x) | ||
|  | { | ||
|  |    return digamma(x, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif | ||
|  | 
 |