js8call/lib/wsprd/fano.c

240 lines
6.8 KiB
C
Raw Normal View History

2018-02-08 21:28:33 -05:00
/*
This file is part of wsprd.
File name: fano.c
Description: Soft decision Fano sequential decoder for K=32 r=1/2
convolutional code.
Copyright 1994, Phil Karn, KA9Q
Minor modifications by Joe Taylor, K1JT
*/
#define LL 1 // Select Layland-Lushbaugh code
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "fano.h"
struct node {
unsigned long encstate; // Encoder state of next node
long gamma; // Cumulative metric to this node
int metrics[4]; // Metrics indexed by all possible tx syms
int tm[2]; // Sorted metrics for current hypotheses
int i; // Current branch being tested
};
// Convolutional coding polynomials. All are rate 1/2, K=32
#ifdef NASA_STANDARD
/* "NASA standard" code by Massey & Costello
* Nonsystematic, quick look-in, dmin=11, dfree=23
* used on Pioneer 10-12, Helios A,B
*/
#define POLY1 0xbbef6bb7
#define POLY2 0xbbef6bb5
#endif
#ifdef MJ
/* Massey-Johannesson code
* Nonsystematic, quick look-in, dmin=13, dfree>=23
* Purported to be more computationally efficient than Massey-Costello
*/
#define POLY1 0xb840a20f
#define POLY2 0xb840a20d
#endif
#ifdef LL
/* Layland-Lushbaugh code
* Nonsystematic, non-quick look-in, dmin=?, dfree=?
*/
#define POLY1 0xf2d05351
#define POLY2 0xe4613c47
#endif
/* Convolutionally encode a packet. The input data bytes are read
* high bit first and the encoded packet is written into 'symbols',
* one symbol per byte. The first symbol is generated from POLY1,
* the second from POLY2.
*
* Storing only one symbol per byte uses more space, but it is faster
* and easier than trying to pack them more compactly.
*/
int encode(
unsigned char *symbols, // Output buffer, 2*nbytes*8
unsigned char *data, // Input buffer, nbytes
unsigned int nbytes) // Number of bytes in data
{
unsigned long encstate;
int sym;
int i;
encstate = 0;
while(nbytes-- != 0) {
for(i=7;i>=0;i--) {
encstate = (encstate << 1) | ((*data >> i) & 1);
ENCODE(sym,encstate);
*symbols++ = sym >> 1;
*symbols++ = sym & 1;
}
data++;
}
return 0;
}
/* Decode packet with the Fano algorithm.
* Return 0 on success, -1 on timeout
*/
int fano(
unsigned int *metric, // Final path metric (returned value)
unsigned int *cycles, // Cycle count (returned value)
unsigned int *maxnp, // Progress before timeout (returned value)
unsigned char *data, // Decoded output data
unsigned char *symbols, // Raw deinterleaved input symbols
unsigned int nbits, // Number of output bits
int mettab[2][256], // Metric table, [sent sym][rx symbol]
int delta, // Threshold adjust parameter
unsigned int maxcycles) // Decoding timeout in cycles per bit
{
struct node *nodes; // First node
struct node *np; // Current node
struct node *lastnode; // Last node
struct node *tail; // First node of tail
int t; // Threshold
int m0,m1;
int ngamma;
unsigned int lsym;
unsigned int i;
if((nodes = (struct node *)malloc((nbits+1)*sizeof(struct node))) == NULL) {
printf("malloc failed\n");
return 0;
}
lastnode = &nodes[nbits-1];
tail = &nodes[nbits-31];
*maxnp = 0;
/* Compute all possible branch metrics for each symbol pair
* This is the only place we actually look at the raw input symbols
*/
for(np=nodes;np <= lastnode;np++) {
np->metrics[0] = mettab[0][symbols[0]] + mettab[0][symbols[1]];
np->metrics[1] = mettab[0][symbols[0]] + mettab[1][symbols[1]];
np->metrics[2] = mettab[1][symbols[0]] + mettab[0][symbols[1]];
np->metrics[3] = mettab[1][symbols[0]] + mettab[1][symbols[1]];
symbols += 2;
}
np = nodes;
np->encstate = 0;
// Compute and sort branch metrics from root node */
ENCODE(lsym,np->encstate); // 0-branch (LSB is 0)
m0 = np->metrics[lsym];
/* Now do the 1-branch. To save another ENCODE call here and
* inside the loop, we assume that both polynomials are odd,
* providing complementary pairs of branch symbols.
* This code should be modified if a systematic code were used.
*/
m1 = np->metrics[3^lsym];
if(m0 > m1) {
np->tm[0] = m0; // 0-branch has better metric
np->tm[1] = m1;
} else {
np->tm[0] = m1; // 1-branch is better
np->tm[1] = m0;
np->encstate++; // Set low bit
}
np->i = 0; // Start with best branch
maxcycles *= nbits;
np->gamma = t = 0;
// Start the Fano decoder
for(i=1;i <= maxcycles;i++) {
if((int)(np-nodes) > (int)*maxnp) *maxnp=(int)(np-nodes);
#ifdef debug
printf("k=%ld, g=%ld, t=%d, m[%d]=%d, maxnp=%d, encstate=%lx\n",
np-nodes,np->gamma,t,np->i,np->tm[np->i],*maxnp,np->encstate);
#endif
// Look forward */
ngamma = np->gamma + np->tm[np->i];
if(ngamma >= t) {
if(np->gamma < t + delta) { // Node is acceptable
/* First time we've visited this node;
* Tighten threshold.
*
* This loop could be replaced with
* t += delta * ((ngamma - t)/delta);
* but the multiply and divide are slower.
*/
while(ngamma >= t + delta) t += delta;
}
np[1].gamma = ngamma; // Move forward
np[1].encstate = np->encstate << 1;
if( ++np == (lastnode+1) ) {
break; // Done!
}
/* Compute and sort metrics, starting with the
* zero branch
*/
ENCODE(lsym,np->encstate);
if(np >= tail) {
/* The tail must be all zeroes, so don't
* bother computing the 1-branches here.
*/
np->tm[0] = np->metrics[lsym];
} else {
m0 = np->metrics[lsym];
m1 = np->metrics[3^lsym];
if(m0 > m1) {
np->tm[0] = m0; // 0-branch is better
np->tm[1] = m1;
} else {
np->tm[0] = m1; // 1-branch is better
np->tm[1] = m0;
np->encstate++; // Set low bit
}
}
np->i = 0; // Start with best branch
continue;
}
// Threshold violated, can't go forward
for(;;) { // Look backward
if(np == nodes || np[-1].gamma < t) {
/* Can't back up either.
* Relax threshold and and look
* forward again to better branch.
*/
t -= delta;
if(np->i != 0) {
np->i = 0;
np->encstate ^= 1;
}
break;
}
// Back up
if(--np < tail && np->i != 1) {
np->i++; // Search next best branch
np->encstate ^= 1;
break;
} // else keep looking back
}
}
*metric = np->gamma; // Return the final path metric
// Copy decoded data to user's buffer
nbits >>= 3;
np = &nodes[7];
while(nbits-- != 0) {
*data++ = np->encstate;
np += 8;
}
*cycles = i+1;
free(nodes);
if(i >= maxcycles) return -1; // Decoder timed out
return 0; // Successful completion
}