519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | #include <stdio.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | #include <math.h>
 | ||
|  | 
 | ||
|  | #define RADS 0.0174532925199433
 | ||
|  | #define DEGS 57.2957795130823
 | ||
|  | #define TPI 6.28318530717959
 | ||
|  | #define PI 3.1415927
 | ||
|  | 
 | ||
|  | /* ratio of     earth radius to astronomical unit */ | ||
|  | #define ER_OVER_AU 0.0000426352325194252
 | ||
|  | 
 | ||
|  | /* all prototypes here */ | ||
|  | 
 | ||
|  | double getcoord(int coord); | ||
|  | void getargs(int argc, char *argv[], int *y, int *m, double *tz, double *glong, double *glat); | ||
|  | double range(double y); | ||
|  | double rangerad(double y); | ||
|  | double days(int y, int m, int dn, double hour); | ||
|  | double days_(int *y, int *m, int *dn, double *hour); | ||
|  | void moonpos(double, double *, double *, double *); | ||
|  | void sunpos(double , double *, double *, double *); | ||
|  | double moontransit(int y, int m, int d, double timezone, double glat, double glong, int *nt); | ||
|  | double atan22(double y, double x); | ||
|  | double epsilon(double d); | ||
|  | void equatorial(double d, double *lon, double *lat, double *r); | ||
|  | void ecliptic(double d, double *lon, double *lat, double *r); | ||
|  | double gst(double d); | ||
|  | void topo(double lst, double glat, double *alp, double *dec, double *r); | ||
|  | double alt(double glat, double ha, double dec); | ||
|  | void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p); | ||
|  | void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill); | ||
|  | int daysinmonth(int y, int m); | ||
|  | int isleap(int y); | ||
|  | void tmoonsub_(double *day, double *glat, double *glong, double *moonalt,  | ||
|  |    double *mrv, double *l, double *b, double *paxis); | ||
|  | 
 | ||
|  | static const char | ||
|  | usage[] = "  Usage: tmoon date[yyyymm] timz[+/-h.hh] long[+/-dddmm] lat[+/-ddmm]\n" | ||
|  |             "example: tmoon 200009 0 -00155 5230\n"; | ||
|  | 
 | ||
|  | /*
 | ||
|  |   getargs() gets the arguments from the command line, does some basic error | ||
|  |   checking, and converts arguments into numerical form. Arguments are passed | ||
|  |   back in pointers. Error messages print to stderr so re-direction of output | ||
|  |   to file won't leave users blind. Error checking prints list of all errors | ||
|  |   in a command line before quitting. | ||
|  | */ | ||
|  | void getargs(int argc, char *argv[], int *y, int *m, double *tz, | ||
|  |              double *glong, double *glat) { | ||
|  | 
 | ||
|  |   int date, latitude, longitude; | ||
|  |   int mflag = 0, yflag = 0, longflag = 0, latflag = 0, tzflag = 0; | ||
|  |   int longminflag = 0, latminflag = 0, dflag = 0; | ||
|  | 
 | ||
|  |   /* if not right number of arguments, then print example command line */ | ||
|  | 
 | ||
|  |   if (argc !=5) { | ||
|  |     fprintf(stderr, usage); | ||
|  |     exit(EXIT_FAILURE); | ||
|  |   } | ||
|  | 
 | ||
|  |   date = atoi(argv[1]); | ||
|  |   *y = date / 100; | ||
|  |   *m = date - *y * 100; | ||
|  |   *tz = (double) atof(argv[2]); | ||
|  |   longitude = atoi(argv[3]); | ||
|  |   latitude = atoi(argv[4]); | ||
|  |   *glong = RADS * getcoord(longitude); | ||
|  |   *glat = RADS * getcoord(latitude); | ||
|  | 
 | ||
|  |   /* set a flag for each error found */ | ||
|  | 
 | ||
|  |   if (*m > 12 || *m < 1) mflag = 1; | ||
|  |   if (*y > 2500) yflag = 1; | ||
|  |   if (date < 150001) dflag = 1; | ||
|  |   if (fabs((float) *glong) > 180 * RADS) longflag = 1; | ||
|  |   if (abs(longitude) % 100 > 59) longminflag = 1; | ||
|  |   if (fabs((float) *glat) > 90 * RADS) latflag = 1; | ||
|  |   if (abs(latitude) % 100 > 59) latminflag = 1; | ||
|  |   if (fabs((float) *tz) > 12) tzflag = 1; | ||
|  | 
 | ||
|  |   /* print all the errors found */ | ||
|  |    | ||
|  |   if (dflag == 1) { | ||
|  |     fprintf(stderr, "date: dates must be in form yyyymm, gregorian, and later than 1500 AD\n"); | ||
|  |   } | ||
|  |   if (yflag == 1) { | ||
|  |     fprintf(stderr, "date: too far in future - accurate from 1500 to 2500\n"); | ||
|  |   } | ||
|  |   if (mflag == 1) { | ||
|  |     fprintf(stderr, "date: month must be in range 0 to 12, eg - August 2000 is entered as 200008\n"); | ||
|  |   } | ||
|  |   if (tzflag == 1) { | ||
|  |     fprintf(stderr, "timz: must be in range +/- 12 hours, eg -6 for Chicago\n"); | ||
|  |   } | ||
|  |   if (longflag == 1) { | ||
|  |     fprintf(stderr, "long: must be in range +/- 180 degrees\n"); | ||
|  |   } | ||
|  |   if (longminflag == 1) { | ||
|  |     fprintf(stderr, "long: last two digits are arcmin - max 59\n"); | ||
|  |   } | ||
|  |   if (latflag == 1) { | ||
|  |     fprintf(stderr, " lat: must be in range +/- 90 degrees\n"); | ||
|  |   } | ||
|  |   if (latminflag == 1) { | ||
|  |     fprintf(stderr, " lat: last two digits are arcmin - max 59\n"); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* quits if one or more flags set */ | ||
|  | 
 | ||
|  |   if (dflag + mflag + yflag + longflag + latflag + tzflag + longminflag + latminflag > 0) { | ||
|  |     exit(EXIT_FAILURE); | ||
|  |   } | ||
|  |    | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |    returns coordinates in decimal degrees given the | ||
|  |    coord as a ddmm value stored in an integer. | ||
|  | */ | ||
|  | double getcoord(int coord) { | ||
|  |   int west = 1; | ||
|  |   double glg, deg; | ||
|  |   if (coord < 0) west = -1; | ||
|  |   glg = fabs((double) coord/100); | ||
|  |   deg = floor(glg); | ||
|  |   glg = west* (deg + (glg - deg)*100 / 60); | ||
|  |   return(glg); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |   days() takes the year, month, day in the month and decimal hours | ||
|  |   in the day and returns the number of days since J2000.0. | ||
|  |   Assumes Gregorian calendar. | ||
|  | */ | ||
|  | double days(int y, int m, int d, double h) { | ||
|  |   int a, b; | ||
|  |   double day; | ||
|  |    | ||
|  |   /*
 | ||
|  |     The lines below work from 1900 march to feb 2100 | ||
|  |     a = 367 * y - 7 * (y + (m + 9) / 12) / 4 + 275 * m / 9 + d; | ||
|  |     day = (double)a - 730531.5 + hour / 24; | ||
|  |   */ | ||
|  | 
 | ||
|  |   /*  These lines work for any Gregorian date since 0 AD */ | ||
|  |   if (m ==1 || m==2) { | ||
|  |     m +=12; | ||
|  |     y -= 1; | ||
|  |   } | ||
|  |   a = y / 100; | ||
|  |   b = 2 - a + a/4; | ||
|  |   day = floor(365.25*(y + 4716)) + floor(30.6001*(m + 1)) | ||
|  |     + d + b - 1524.5 - 2451545 + h/24; | ||
|  |   return(day); | ||
|  | } | ||
|  | double days_(int *y0, int *m0, int *d0, double *h0)  | ||
|  | { | ||
|  |   return days(*y0,*m0,*d0,*h0); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | Returns 1 if y a leap year, and 0 otherwise, according | ||
|  | to the Gregorian calendar | ||
|  | */ | ||
|  | int isleap(int y) { | ||
|  |   int a = 0; | ||
|  |   if(y % 4 == 0) a = 1; | ||
|  |   if(y % 100 == 0) a = 0; | ||
|  |   if(y % 400 == 0) a = 1; | ||
|  |   return(a); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | Given the year and the month, function returns the | ||
|  | number of days in the month. Valid for Gregorian | ||
|  | calendar. | ||
|  | */ | ||
|  | int daysinmonth(int y, int m) { | ||
|  |   int b = 31; | ||
|  |   if(m == 2) { | ||
|  |     if(isleap(y) == 1) b= 29; | ||
|  |     else b = 28; | ||
|  |   } | ||
|  |   if(m == 4 || m == 6 || m == 9 || m == 11) b = 30; | ||
|  |   return(b); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | moonpos() takes days from J2000.0 and returns ecliptic coordinates | ||
|  | of moon in the pointers. Note call by reference. | ||
|  | This function is within a couple of arcminutes most of the time, | ||
|  | and is truncated from the Meeus Ch45 series, themselves truncations of | ||
|  | ELP-2000. Returns moon distance in earth radii. | ||
|  | Terms have been written out explicitly rather than using the | ||
|  | table based method as only a small number of terms is | ||
|  | retained. | ||
|  | */ | ||
|  | void moonpos(double d, double *lambda, double *beta, double *rvec) { | ||
|  |   double dl, dB, dR, L, D, M, M1, F, e, lm, bm, rm, t; | ||
|  | 
 | ||
|  |   t = d / 36525; | ||
|  | 
 | ||
|  |   L = range(218.3164591  + 481267.88134236  * t) * RADS; | ||
|  |   D = range(297.8502042  + 445267.1115168  * t) * RADS; | ||
|  |   M = range(357.5291092  + 35999.0502909  * t) * RADS; | ||
|  |   M1 = range(134.9634114  + 477198.8676313  * t - .008997 * t * t) * RADS; | ||
|  |   F = range(93.27209929999999  + 483202.0175273  * t - .0034029*t*t)*RADS; | ||
|  |   e = 1 - .002516 * t; | ||
|  | 
 | ||
|  |   dl =      6288774 * sin(M1); | ||
|  |   dl +=     1274027 * sin(2 * D - M1); | ||
|  |   dl +=      658314 * sin(2 * D); | ||
|  |   dl +=      213618 * sin(2 * M1); | ||
|  |   dl -=  e * 185116 * sin(M); | ||
|  |   dl -=      114332 * sin(2 * F) ; | ||
|  |   dl +=       58793 * sin(2 * D - 2 * M1); | ||
|  |   dl +=   e * 57066 * sin(2 * D - M - M1) ; | ||
|  |   dl +=       53322 * sin(2 * D + M1); | ||
|  |   dl +=   e * 45758 * sin(2 * D - M); | ||
|  |   dl -=   e * 40923 * sin(M - M1); | ||
|  |   dl -=       34720 * sin(D) ; | ||
|  |   dl -=   e * 30383 * sin(M + M1) ; | ||
|  |   dl +=       15327 * sin(2 * D - 2 * F) ; | ||
|  |   dl -=       12528 * sin(M1 + 2 * F); | ||
|  |   dl +=       10980 * sin(M1 - 2 * F); | ||
|  |   lm = rangerad(L + dl / 1000000 * RADS); | ||
|  | 
 | ||
|  |   dB =   5128122 * sin(F); | ||
|  |   dB +=   280602 * sin(M1 + F); | ||
|  |   dB +=   277693 * sin(M1 - F); | ||
|  |   dB +=   173237 * sin(2 * D - F); | ||
|  |   dB +=    55413 * sin(2 * D - M1 + F); | ||
|  |   dB +=    46271 * sin(2 * D - M1 - F); | ||
|  |   dB +=    32573 * sin(2 * D + F); | ||
|  |   dB +=    17198 * sin(2 * M1 + F); | ||
|  |   dB +=     9266 * sin(2 * D + M1 - F); | ||
|  |   dB +=     8822 * sin(2 * M1 - F); | ||
|  |   dB += e * 8216 * sin(2 * D - M - F); | ||
|  |   dB +=     4324 * sin(2 * D - 2 * M1 - F); | ||
|  |   bm = dB / 1000000 * RADS; | ||
|  | 
 | ||
|  |   dR =    -20905355 * cos(M1); | ||
|  |   dR -=     3699111 * cos(2 * D - M1); | ||
|  |   dR -=     2955968 * cos(2 * D); | ||
|  |   dR -=      569925 * cos(2 * M1); | ||
|  |   dR +=   e * 48888 * cos(M); | ||
|  |   dR -=        3149 * cos(2 * F); | ||
|  |   dR +=      246158 * cos(2 * D - 2 * M1); | ||
|  |   dR -=  e * 152138 * cos(2 * D - M - M1) ; | ||
|  |   dR -=      170733 * cos(2 * D + M1); | ||
|  |   dR -=  e * 204586 * cos(2 * D - M); | ||
|  |   dR -=  e * 129620 * cos(M - M1); | ||
|  |   dR +=      108743 * cos(D); | ||
|  |   dR +=  e * 104755 * cos(M + M1); | ||
|  |   dR +=       79661 * cos(M1 - 2 * F); | ||
|  |   rm = 385000.56  + dR / 1000; | ||
|  | 
 | ||
|  |   *lambda = lm; | ||
|  |   *beta = bm; | ||
|  |   /* distance to Moon must be in Earth radii */ | ||
|  |   *rvec = rm / 6378.14; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | topomoon() takes the local siderial time, the geographical | ||
|  | latitude of the observer, and pointers to the geocentric | ||
|  | equatorial coordinates. The function overwrites the geocentric | ||
|  | coordinates with topocentric coordinates on a simple spherical | ||
|  | earth model (no polar flattening). Expects Moon-Earth distance in | ||
|  | Earth radii.    Formulas scavenged from Astronomical Almanac 'low | ||
|  | precision formulae for Moon position' page D46. | ||
|  | */ | ||
|  | 
 | ||
|  | void topo(double lst, double glat, double *alp, double *dec, double *r) { | ||
|  |   double x, y, z, r1; | ||
|  |   x = *r * cos(*dec) * cos(*alp) - cos(glat) * cos(lst); | ||
|  |   y = *r * cos(*dec) * sin(*alp) - cos(glat) * sin(lst); | ||
|  |   z = *r * sin(*dec)  - sin(glat); | ||
|  |   r1 = sqrt(x*x + y*y + z*z); | ||
|  |   *alp = atan22(y, x); | ||
|  |   *dec = asin(z / r1); | ||
|  |   *r = r1; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | moontransit() takes date, the time zone and geographic longitude | ||
|  | of observer and returns the time (decimal hours) of lunar transit | ||
|  | on that day if there is one, and sets the notransit flag if there | ||
|  | isn't. See Explanatory Supplement to Astronomical Almanac | ||
|  | section 9.32 and 9.31 for the method. | ||
|  | */ | ||
|  | 
 | ||
|  | double moontransit(int y, int m, int d, double tz, double glat, double glong, int *notransit) { | ||
|  |   double hm, ht, ht1, lon, lat, rv, dnew, lst; | ||
|  |   int itcount; | ||
|  | 
 | ||
|  |   ht1 = 180 * RADS; | ||
|  |   ht = 0; | ||
|  |   itcount = 0; | ||
|  |   *notransit = 0; | ||
|  |   do { | ||
|  |     ht = ht1; | ||
|  |     itcount++; | ||
|  |     dnew = days(y, m, d, ht * DEGS/15) - tz/24; | ||
|  |     lst = gst(dnew) + glong; | ||
|  |     /* find the topocentric Moon ra (hence hour angle) and dec */ | ||
|  |     moonpos(dnew, &lon, &lat, &rv); | ||
|  |     equatorial(dnew, &lon, &lat, &rv); | ||
|  |     topo(lst, glat, &lon, &lat, &rv); | ||
|  |     hm = rangerad(lst -  lon); | ||
|  |     ht1 = rangerad(ht - hm); | ||
|  |     /* if no convergence, then no transit on that day */ | ||
|  |     if (itcount > 30) { | ||
|  |       *notransit = 1; | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  |   while (fabs(ht - ht1) > 0.04 * RADS); | ||
|  |   return(ht1); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Calculates the selenographic coordinates of either the sub Earth point | ||
|  |   (optical libration) or the sub-solar point (selen. coords of centre of | ||
|  |   bright hemisphere).  Based on Meeus chapter 51 but neglects physical | ||
|  |   libration and nutation, with some simplification of the formulas. | ||
|  | */ | ||
|  | void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p) { | ||
|  |   double i, f, omega, w, y, x, a, t, eps; | ||
|  |   t = day / 36525; | ||
|  |   i = 1.54242 * RADS; | ||
|  |   eps = epsilon(day); | ||
|  |   f = range(93.2720993 + 483202.0175273 * t - .0034029 * t * t) * RADS; | ||
|  |   omega = range(125.044555 - 1934.1361849 * t + .0020762 * t * t) * RADS; | ||
|  |   w = lambda - omega; | ||
|  |   y = sin(w) * cos(beta) * cos(i) - sin(beta) * sin(i); | ||
|  |   x = cos(w) * cos(beta); | ||
|  |   a = atan22(y, x); | ||
|  |   *l = a - f; | ||
|  | 
 | ||
|  |   /*  kludge to catch cases of 'round the back' angles  */ | ||
|  |   if (*l < -90 * RADS) *l += TPI; | ||
|  |   if (*l > 90 * RADS)  *l -= TPI; | ||
|  |   *b = asin(-sin(w) * cos(beta) * sin(i) - sin(beta) * cos(i)); | ||
|  | 
 | ||
|  |   /*  pa pole axis - not used for Sun stuff */ | ||
|  |   x = sin(i) * sin(omega); | ||
|  |   y = sin(i) * cos(omega) * cos(eps) - cos(i) * sin(eps); | ||
|  |   w = atan22(x, y); | ||
|  |   *p = rangerad(asin(sqrt(x*x + y*y) * cos(alpha - w) / cos(*b))); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Takes: days since J2000.0, eq coords Moon, ratio of moon to sun distance, | ||
|  |   eq coords Sun | ||
|  |   Returns: position angle of bright limb wrt NCP, percentage illumination | ||
|  |   of Sun | ||
|  | */ | ||
|  | void illumination(double day , double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill) { | ||
|  |   double x, y, phi, i; | ||
|  |   (void)day; | ||
|  |   y = cos(sdec) * sin(sra - lra); | ||
|  |   x = sin(sdec) * cos(ldec) - cos(sdec) * sin(ldec) * cos (sra - lra); | ||
|  |   *pabl = atan22(y, x); | ||
|  |   phi = acos(sin(sdec) * sin(ldec) + cos(sdec) * cos(ldec) * cos(sra-lra)); | ||
|  |   i = atan22(sin(phi) , (dr - cos(phi))); | ||
|  |   *ill = 0.5*(1 + cos(i)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | sunpos() takes days from J2000.0 and returns ecliptic longitude | ||
|  | of Sun in the pointers. Latitude is zero at this level of precision, | ||
|  | but pointer left in for consistency in number of arguments. | ||
|  | This function is within 0.01 degree (1 arcmin) almost all the time | ||
|  | for a century either side of J2000.0. This is from the 'low precision | ||
|  | fomulas for the Sun' from C24 of Astronomical Alamanac | ||
|  | */ | ||
|  | void sunpos(double d, double *lambda, double *beta, double *rvec) { | ||
|  |   double L, g, ls, bs, rs; | ||
|  | 
 | ||
|  |   L = range(280.461 + .9856474 * d) * RADS; | ||
|  |   g = range(357.528 + .9856003 * d) * RADS; | ||
|  |   ls = L + (1.915 * sin(g) + .02 * sin(2 * g)) * RADS; | ||
|  |   bs = 0; | ||
|  |   rs = 1.00014 - .01671 * cos(g) - .00014 * cos(2 * g); | ||
|  |   *lambda = ls; | ||
|  |   *beta = bs; | ||
|  |   *rvec = rs; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | this routine returns the altitude given the days since J2000.0 | ||
|  | the hour angle and declination of the object and the latitude | ||
|  | of the observer. Used to find the Sun's altitude to put a letter | ||
|  | code on the transit time, and to find the Moon's altitude at | ||
|  | transit just to make sure that the Moon is visible. | ||
|  | */ | ||
|  | double alt(double glat, double ha, double dec) { | ||
|  |   return(asin(sin(dec) * sin(glat) + cos(dec) * cos(glat) * cos(ha))); | ||
|  | } | ||
|  | 
 | ||
|  | /* returns an angle in degrees in the range 0 to 360 */ | ||
|  | double range(double x) { | ||
|  |   double a, b; | ||
|  |   b = x / 360; | ||
|  |   a = 360 * (b - floor(b)); | ||
|  |   if (a < 0) | ||
|  |     a = 360 + a; | ||
|  |   return(a); | ||
|  | } | ||
|  | 
 | ||
|  | /* returns an angle in rads in the range 0 to two pi */ | ||
|  | double rangerad(double x) { | ||
|  |   double a, b; | ||
|  |   b = x / TPI; | ||
|  |   a = TPI * (b - floor(b)); | ||
|  |   if (a < 0) | ||
|  |     a = TPI + a; | ||
|  |   return(a); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | gets the atan2 function returning angles in the right | ||
|  | order and  range | ||
|  | */ | ||
|  | double atan22(double y, double x) { | ||
|  |   double a; | ||
|  | 
 | ||
|  |   a = atan2(y, x); | ||
|  |   if (a < 0) a += TPI; | ||
|  |   return(a); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | returns mean obliquity of ecliptic in radians given days since | ||
|  | J2000.0. | ||
|  | */ | ||
|  | double epsilon(double d) { | ||
|  |   double t = d/ 36525; | ||
|  |   return((23.4392911111111 - (t* (46.8150 + 0.00059*t)/3600)) *RADS); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | replaces ecliptic coordinates with equatorial coordinates | ||
|  | note: call by reference destroys original values | ||
|  | R is unchanged. | ||
|  | */ | ||
|  | void equatorial(double d, double *lon, double *lat, double * r) { | ||
|  |   double  eps, ceps, seps, l, b; | ||
|  |   (void)r; | ||
|  | 
 | ||
|  |   l = *lon; | ||
|  |   b = * lat; | ||
|  |   eps = epsilon(d); | ||
|  |   ceps = cos(eps); | ||
|  |   seps = sin(eps); | ||
|  |   *lon = atan22(sin(l)*ceps - tan(b)*seps, cos(l)); | ||
|  |   *lat = asin(sin(b)*ceps + cos(b)*seps*sin(l)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | replaces equatorial coordinates with ecliptic ones. Inverse | ||
|  | of above, but used to find topocentric ecliptic coords. | ||
|  | */ | ||
|  | void ecliptic(double d, double *lon, double *lat, double * r) { | ||
|  |   double  eps, ceps, seps, alp, dec; | ||
|  |   (void)r; | ||
|  | 
 | ||
|  |   alp = *lon; | ||
|  |   dec = *lat; | ||
|  |   eps = epsilon(d); | ||
|  |   ceps = cos(eps); | ||
|  |   seps = sin(eps); | ||
|  |   *lon = atan22(sin(alp)*ceps + tan(dec)*seps, cos(alp)); | ||
|  |   *lat = asin(sin(dec)*ceps - cos(dec)*seps*sin(alp)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | returns the siderial time at greenwich meridian as | ||
|  | an angle in radians given the days since J2000.0 | ||
|  | */ | ||
|  | double gst( double d) { | ||
|  |   double t = d / 36525; | ||
|  |   double theta; | ||
|  |   theta = range(280.46061837 + 360.98564736629 * d + 0.000387933 * t * t); | ||
|  |   return(theta * RADS); | ||
|  | } | ||
|  | 
 | ||
|  | void tmoonsub_(double *day, double *glat, double *glong, double *moonalt,  | ||
|  |    double *mrv, double *l, double *b, double *paxis) | ||
|  | { | ||
|  |   double mlambda, mbeta; | ||
|  |   double malpha, mdelta; | ||
|  |   double lst, mhr; | ||
|  |   double tlambda, tbeta, trv; | ||
|  | 
 | ||
|  |   lst = gst(*day) + *glong; | ||
|  |        | ||
|  |   /* find Moon topocentric coordinates for libration calculations */ | ||
|  | 
 | ||
|  |   moonpos(*day, &mlambda, &mbeta, mrv); | ||
|  |   malpha = mlambda; | ||
|  |   mdelta = mbeta; | ||
|  |   equatorial(*day, &malpha, &mdelta, mrv); | ||
|  |   topo(lst, *glat, &malpha, &mdelta, mrv); | ||
|  |   mhr = rangerad(lst - malpha); | ||
|  |   *moonalt = alt(*glat, mhr, mdelta); | ||
|  |        | ||
|  |   /* Optical libration and Position angle of the Pole */ | ||
|  | 
 | ||
|  |   tlambda = malpha; | ||
|  |   tbeta = mdelta; | ||
|  |   trv = *mrv; | ||
|  |   ecliptic(*day, &tlambda, &tbeta, &trv); | ||
|  |   libration(*day, tlambda, tbeta, malpha,  l, b, paxis); | ||
|  | } |