224 lines
6.6 KiB
Plaintext
224 lines
6.6 KiB
Plaintext
|
// Copyright (c) 2007 John Maddock
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
//
|
||
|
// This is a partial header, do not include on it's own!!!
|
||
|
//
|
||
|
// Contains asymptotic expansions for Bessel J(v,x) and Y(v,x)
|
||
|
// functions, as x -> INF.
|
||
|
//
|
||
|
#ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP
|
||
|
#define BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma once
|
||
|
#endif
|
||
|
|
||
|
#include <boost/math/special_functions/factorials.hpp>
|
||
|
|
||
|
namespace boost{ namespace math{ namespace detail{
|
||
|
|
||
|
template <class T>
|
||
|
inline T asymptotic_bessel_amplitude(T v, T x)
|
||
|
{
|
||
|
// Calculate the amplitude of J(v, x) and Y(v, x) for large
|
||
|
// x: see A&S 9.2.28.
|
||
|
BOOST_MATH_STD_USING
|
||
|
T s = 1;
|
||
|
T mu = 4 * v * v;
|
||
|
T txq = 2 * x;
|
||
|
txq *= txq;
|
||
|
|
||
|
s += (mu - 1) / (2 * txq);
|
||
|
s += 3 * (mu - 1) * (mu - 9) / (txq * txq * 8);
|
||
|
s += 15 * (mu - 1) * (mu - 9) * (mu - 25) / (txq * txq * txq * 8 * 6);
|
||
|
|
||
|
return sqrt(s * 2 / (constants::pi<T>() * x));
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
T asymptotic_bessel_phase_mx(T v, T x)
|
||
|
{
|
||
|
//
|
||
|
// Calculate the phase of J(v, x) and Y(v, x) for large x.
|
||
|
// See A&S 9.2.29.
|
||
|
// Note that the result returned is the phase less (x - PI(v/2 + 1/4))
|
||
|
// which we'll factor in later when we calculate the sines/cosines of the result:
|
||
|
//
|
||
|
T mu = 4 * v * v;
|
||
|
T denom = 4 * x;
|
||
|
T denom_mult = denom * denom;
|
||
|
|
||
|
T s = 0;
|
||
|
s += (mu - 1) / (2 * denom);
|
||
|
denom *= denom_mult;
|
||
|
s += (mu - 1) * (mu - 25) / (6 * denom);
|
||
|
denom *= denom_mult;
|
||
|
s += (mu - 1) * (mu * mu - 114 * mu + 1073) / (5 * denom);
|
||
|
denom *= denom_mult;
|
||
|
s += (mu - 1) * (5 * mu * mu * mu - 1535 * mu * mu + 54703 * mu - 375733) / (14 * denom);
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
inline T asymptotic_bessel_y_large_x_2(T v, T x)
|
||
|
{
|
||
|
// See A&S 9.2.19.
|
||
|
BOOST_MATH_STD_USING
|
||
|
// Get the phase and amplitude:
|
||
|
T ampl = asymptotic_bessel_amplitude(v, x);
|
||
|
T phase = asymptotic_bessel_phase_mx(v, x);
|
||
|
BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
|
||
|
BOOST_MATH_INSTRUMENT_VARIABLE(phase);
|
||
|
//
|
||
|
// Calculate the sine of the phase, using
|
||
|
// sine/cosine addition rules to factor in
|
||
|
// the x - PI(v/2 + 1/4) term not added to the
|
||
|
// phase when we calculated it.
|
||
|
//
|
||
|
T cx = cos(x);
|
||
|
T sx = sin(x);
|
||
|
T ci = cos_pi(v / 2 + 0.25f);
|
||
|
T si = sin_pi(v / 2 + 0.25f);
|
||
|
T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si);
|
||
|
BOOST_MATH_INSTRUMENT_CODE(sin(phase));
|
||
|
BOOST_MATH_INSTRUMENT_CODE(cos(x));
|
||
|
BOOST_MATH_INSTRUMENT_CODE(cos(phase));
|
||
|
BOOST_MATH_INSTRUMENT_CODE(sin(x));
|
||
|
return sin_phase * ampl;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
inline T asymptotic_bessel_j_large_x_2(T v, T x)
|
||
|
{
|
||
|
// See A&S 9.2.19.
|
||
|
BOOST_MATH_STD_USING
|
||
|
// Get the phase and amplitude:
|
||
|
T ampl = asymptotic_bessel_amplitude(v, x);
|
||
|
T phase = asymptotic_bessel_phase_mx(v, x);
|
||
|
BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
|
||
|
BOOST_MATH_INSTRUMENT_VARIABLE(phase);
|
||
|
//
|
||
|
// Calculate the sine of the phase, using
|
||
|
// sine/cosine addition rules to factor in
|
||
|
// the x - PI(v/2 + 1/4) term not added to the
|
||
|
// phase when we calculated it.
|
||
|
//
|
||
|
BOOST_MATH_INSTRUMENT_CODE(cos(phase));
|
||
|
BOOST_MATH_INSTRUMENT_CODE(cos(x));
|
||
|
BOOST_MATH_INSTRUMENT_CODE(sin(phase));
|
||
|
BOOST_MATH_INSTRUMENT_CODE(sin(x));
|
||
|
T cx = cos(x);
|
||
|
T sx = sin(x);
|
||
|
T ci = cos_pi(v / 2 + 0.25f);
|
||
|
T si = sin_pi(v / 2 + 0.25f);
|
||
|
T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
|
||
|
BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
|
||
|
return sin_phase * ampl;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
inline bool asymptotic_bessel_large_x_limit(int v, const T& x)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
//
|
||
|
// Determines if x is large enough compared to v to take the asymptotic
|
||
|
// forms above. From A&S 9.2.28 we require:
|
||
|
// v < x * eps^1/8
|
||
|
// and from A&S 9.2.29 we require:
|
||
|
// v^12/10 < 1.5 * x * eps^1/10
|
||
|
// using the former seems to work OK in practice with broadly similar
|
||
|
// error rates either side of the divide for v < 10000.
|
||
|
// At double precision eps^1/8 ~= 0.01.
|
||
|
//
|
||
|
BOOST_ASSERT(v >= 0);
|
||
|
return (v ? v : 1) < x * 0.004f;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
inline bool asymptotic_bessel_large_x_limit(const T& v, const T& x)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
//
|
||
|
// Determines if x is large enough compared to v to take the asymptotic
|
||
|
// forms above. From A&S 9.2.28 we require:
|
||
|
// v < x * eps^1/8
|
||
|
// and from A&S 9.2.29 we require:
|
||
|
// v^12/10 < 1.5 * x * eps^1/10
|
||
|
// using the former seems to work OK in practice with broadly similar
|
||
|
// error rates either side of the divide for v < 10000.
|
||
|
// At double precision eps^1/8 ~= 0.01.
|
||
|
//
|
||
|
return (std::max)(T(fabs(v)), T(1)) < x * sqrt(tools::forth_root_epsilon<T>());
|
||
|
}
|
||
|
|
||
|
template <class T, class Policy>
|
||
|
void temme_asyptotic_y_small_x(T v, T x, T* Y, T* Y1, const Policy& pol)
|
||
|
{
|
||
|
T c = 1;
|
||
|
T p = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, -v) / boost::math::tgamma(1 - v, pol);
|
||
|
T q = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, v) / boost::math::tgamma(1 + v, pol);
|
||
|
T f = (p - q) / v;
|
||
|
T g_prefix = boost::math::sin_pi(v / 2, pol);
|
||
|
g_prefix *= g_prefix * 2 / v;
|
||
|
T g = f + g_prefix * q;
|
||
|
T h = p;
|
||
|
T c_mult = -x * x / 4;
|
||
|
|
||
|
T y(c * g), y1(c * h);
|
||
|
|
||
|
for(int k = 1; k < policies::get_max_series_iterations<Policy>(); ++k)
|
||
|
{
|
||
|
f = (k * f + p + q) / (k*k - v*v);
|
||
|
p /= k - v;
|
||
|
q /= k + v;
|
||
|
c *= c_mult / k;
|
||
|
T c1 = pow(-x * x / 4, k) / factorial<T>(k, pol);
|
||
|
g = f + g_prefix * q;
|
||
|
h = -k * g + p;
|
||
|
y += c * g;
|
||
|
y1 += c * h;
|
||
|
if(c * g / tools::epsilon<T>() < y)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
*Y = -y;
|
||
|
*Y1 = (-2 / x) * y1;
|
||
|
}
|
||
|
|
||
|
template <class T, class Policy>
|
||
|
T asymptotic_bessel_i_large_x(T v, T x, const Policy& pol)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // ADL of std names
|
||
|
T s = 1;
|
||
|
T mu = 4 * v * v;
|
||
|
T ex = 8 * x;
|
||
|
T num = mu - 1;
|
||
|
T denom = ex;
|
||
|
|
||
|
s -= num / denom;
|
||
|
|
||
|
num *= mu - 9;
|
||
|
denom *= ex * 2;
|
||
|
s += num / denom;
|
||
|
|
||
|
num *= mu - 25;
|
||
|
denom *= ex * 3;
|
||
|
s -= num / denom;
|
||
|
|
||
|
// Try and avoid overflow to the last minute:
|
||
|
T e = exp(x/2);
|
||
|
|
||
|
s = e * (e * s / sqrt(2 * x * constants::pi<T>()));
|
||
|
|
||
|
return (boost::math::isfinite)(s) ?
|
||
|
s : policies::raise_overflow_error<T>("boost::math::asymptotic_bessel_i_large_x<%1%>(%1%,%1%)", 0, pol);
|
||
|
}
|
||
|
|
||
|
}}} // namespaces
|
||
|
|
||
|
#endif
|
||
|
|