298 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			298 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | // Copyright 2011 John Maddock. Distributed under the Boost | ||
|  | // Distributed under the Boost Software License, Version 1.0. | ||
|  | //    (See accompanying file LICENSE_1_0.txt or copy at | ||
|  | //          http://www.boost.org/LICENSE_1_0.txt) | ||
|  | // | ||
|  | // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp | ||
|  | //  | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void calc_log2(T& num, unsigned digits) | ||
|  | { | ||
|  |    typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; | ||
|  |    typedef typename mpl::front<typename T::signed_types>::type si_type; | ||
|  | 
 | ||
|  |    // | ||
|  |    // String value with 1100 digits: | ||
|  |    // | ||
|  |    static const char* string_val = "0." | ||
|  |         "6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875" | ||
|  |         "4200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335" | ||
|  |         "0115364497955239120475172681574932065155524734139525882950453007095326366642654104239157814952043740" | ||
|  |         "4303855008019441706416715186447128399681717845469570262716310645461502572074024816377733896385506952" | ||
|  |         "6066834113727387372292895649354702576265209885969320196505855476470330679365443254763274495125040606" | ||
|  |         "9438147104689946506220167720424524529612687946546193165174681392672504103802546259656869144192871608" | ||
|  |         "2938031727143677826548775664850856740776484514644399404614226031930967354025744460703080960850474866" | ||
|  |         "3852313818167675143866747664789088143714198549423151997354880375165861275352916610007105355824987941" | ||
|  |         "4729509293113897155998205654392871700072180857610252368892132449713893203784393530887748259701715591" | ||
|  |         "0708823683627589842589185353024363421436706118923678919237231467232172053401649256872747782344535347" | ||
|  |         "6481149418642386776774406069562657379600867076257199184734022651462837904883062033061144630073719489"; | ||
|  |    // | ||
|  |    // Check if we can just construct from string: | ||
|  |    // | ||
|  |    if(digits  < 3640)  // 3640 binary digits ~ 1100 decimal digits | ||
|  |    { | ||
|  |       num = string_val; | ||
|  |       return; | ||
|  |    } | ||
|  |    // | ||
|  |    // We calculate log2 from using the formula: | ||
|  |    // | ||
|  |    // ln(2) = 3/4 SUM[n>=0] ((-1)^n * N!^2 / (2^n(2n+1)!)) | ||
|  |    // | ||
|  |    // Numerator and denominator are calculated separately and then  | ||
|  |    // divided at the end, we also precalculate the terms up to n = 5 | ||
|  |    // since these fit in a 32-bit integer anyway. | ||
|  |    // | ||
|  |    // See Gourdon, X., and Sebah, P. The logarithmic constant: log 2, Jan. 2004. | ||
|  |    // Also http://www.mpfr.org/algorithms.pdf. | ||
|  |    // | ||
|  |    num = static_cast<ui_type>(1180509120uL); | ||
|  |    T denom, next_term, temp; | ||
|  |    denom = static_cast<ui_type>(1277337600uL); | ||
|  |    next_term = static_cast<ui_type>(120uL); | ||
|  |    si_type sign = -1; | ||
|  | 
 | ||
|  |    ui_type limit = digits / 3 + 1; | ||
|  | 
 | ||
|  |    for(ui_type n = 6; n < limit; ++n) | ||
|  |    { | ||
|  |       temp = static_cast<ui_type>(2); | ||
|  |       eval_multiply(temp, ui_type(2 * n)); | ||
|  |       eval_multiply(temp, ui_type(2 * n + 1)); | ||
|  |       eval_multiply(num, temp); | ||
|  |       eval_multiply(denom, temp); | ||
|  |       sign = -sign; | ||
|  |       eval_multiply(next_term, n); | ||
|  |       eval_multiply(temp, next_term, next_term); | ||
|  |       if(sign < 0) | ||
|  |          temp.negate(); | ||
|  |       eval_add(num, temp); | ||
|  |    } | ||
|  |    eval_multiply(denom, ui_type(4)); | ||
|  |    eval_multiply(num, ui_type(3)); | ||
|  |    INSTRUMENT_BACKEND(denom); | ||
|  |    INSTRUMENT_BACKEND(num); | ||
|  |    eval_divide(num, denom); | ||
|  |    INSTRUMENT_BACKEND(num); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void calc_e(T& result, unsigned digits) | ||
|  | { | ||
|  |    typedef typename mpl::front<typename T::unsigned_types>::type ui_type; | ||
|  |    // | ||
|  |    // 1100 digits in string form: | ||
|  |    // | ||
|  |    const char* string_val = "2." | ||
|  |          "7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274" | ||
|  |          "2746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901" | ||
|  |          "1573834187930702154089149934884167509244761460668082264800168477411853742345442437107539077744992069" | ||
|  |          "5517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416" | ||
|  |          "9283681902551510865746377211125238978442505695369677078544996996794686445490598793163688923009879312" | ||
|  |          "7736178215424999229576351482208269895193668033182528869398496465105820939239829488793320362509443117" | ||
|  |          "3012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509" | ||
|  |          "9618188159304169035159888851934580727386673858942287922849989208680582574927961048419844436346324496" | ||
|  |          "8487560233624827041978623209002160990235304369941849146314093431738143640546253152096183690888707016" | ||
|  |          "7683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354" | ||
|  |          "0212340784981933432106817012100562788023519303322474501585390473041995777709350366041699732972508869"; | ||
|  |    // | ||
|  |    // Check if we can just construct from string: | ||
|  |    // | ||
|  |    if(digits  < 3640) // 3640 binary digits ~ 1100 decimal digits | ||
|  |    { | ||
|  |       result = string_val; | ||
|  |       return; | ||
|  |    } | ||
|  | 
 | ||
|  |    T lim; | ||
|  |    lim = ui_type(1); | ||
|  |    eval_ldexp(lim, lim, digits); | ||
|  | 
 | ||
|  |    // | ||
|  |    // Standard evaluation from the definition of e: http://functions.wolfram.com/Constants/E/02/ | ||
|  |    // | ||
|  |    result = ui_type(2); | ||
|  |    T denom; | ||
|  |    denom = ui_type(1); | ||
|  |    ui_type i = 2; | ||
|  |    do{ | ||
|  |       eval_multiply(denom, i); | ||
|  |       eval_multiply(result, i); | ||
|  |       eval_add(result, ui_type(1)); | ||
|  |       ++i; | ||
|  |    }while(denom.compare(lim) <= 0); | ||
|  |    eval_divide(result, denom); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void calc_pi(T& result, unsigned digits) | ||
|  | { | ||
|  |    typedef typename mpl::front<typename T::unsigned_types>::type ui_type; | ||
|  |    typedef typename mpl::front<typename T::float_types>::type real_type; | ||
|  |    // | ||
|  |    // 1100 digits in string form: | ||
|  |    // | ||
|  |    const char* string_val = "3." | ||
|  |          "1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679" | ||
|  |          "8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196" | ||
|  |          "4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273" | ||
|  |          "7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094" | ||
|  |          "3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912" | ||
|  |          "9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132" | ||
|  |          "0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235" | ||
|  |          "4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859" | ||
|  |          "5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303" | ||
|  |          "5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989" | ||
|  |          "3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913152"; | ||
|  |    // | ||
|  |    // Check if we can just construct from string: | ||
|  |    // | ||
|  |    if(digits  < 3640) // 3640 binary digits ~ 1100 decimal digits | ||
|  |    { | ||
|  |       result = string_val; | ||
|  |       return; | ||
|  |    } | ||
|  | 
 | ||
|  |    T a; | ||
|  |    a = ui_type(1); | ||
|  |    T b; | ||
|  |    T A(a); | ||
|  |    T B; | ||
|  |    B = real_type(0.5f); | ||
|  |    T D; | ||
|  |    D = real_type(0.25f); | ||
|  | 
 | ||
|  |    T lim; | ||
|  |    lim = ui_type(1); | ||
|  |    eval_ldexp(lim, lim, -(int)digits); | ||
|  | 
 | ||
|  |    // | ||
|  |    // This algorithm is from: | ||
|  |    // Schonhage, A., Grotefeld, A. F. W., and Vetter, E. Fast Algorithms: A Multitape Turing | ||
|  |    // Machine Implementation. BI Wissenschaftverlag, 1994. | ||
|  |    // Also described in MPFR's algorithm guide: http://www.mpfr.org/algorithms.pdf. | ||
|  |    // | ||
|  |    // Let: | ||
|  |    // a[0] = A[0] = 1 | ||
|  |    // B[0] = 1/2 | ||
|  |    // D[0] = 1/4 | ||
|  |    // Then: | ||
|  |    // S[k+1] = (A[k]+B[k]) / 4 | ||
|  |    // b[k] = sqrt(B[k]) | ||
|  |    // a[k+1] = a[k]^2 | ||
|  |    // B[k+1] = 2(A[k+1]-S[k+1]) | ||
|  |    // D[k+1] = D[k] - 2^k(A[k+1]-B[k+1]) | ||
|  |    // Stop when |A[k]-B[k]| <= 2^(k-p) | ||
|  |    // and PI = B[k]/D[k] | ||
|  | 
 | ||
|  |    unsigned k = 1; | ||
|  | 
 | ||
|  |    do | ||
|  |    { | ||
|  |       eval_add(result, A, B); | ||
|  |       eval_ldexp(result, result, -2); | ||
|  |       eval_sqrt(b, B); | ||
|  |       eval_add(a, b); | ||
|  |       eval_ldexp(a, a, -1); | ||
|  |       eval_multiply(A, a, a); | ||
|  |       eval_subtract(B, A, result); | ||
|  |       eval_ldexp(B, B, 1); | ||
|  |       eval_subtract(result, A, B); | ||
|  |       bool neg = eval_get_sign(result) < 0; | ||
|  |       if(neg) | ||
|  |          result.negate(); | ||
|  |       if(result.compare(lim) <= 0) | ||
|  |          break; | ||
|  |       if(neg) | ||
|  |          result.negate(); | ||
|  |       eval_ldexp(result, result, k - 1); | ||
|  |       eval_subtract(D, result); | ||
|  |       ++k; | ||
|  |       eval_ldexp(lim, lim, 1); | ||
|  |    } | ||
|  |    while(true); | ||
|  | 
 | ||
|  |    eval_divide(result, B, D); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, const T& (*F)(void)> | ||
|  | struct constant_initializer | ||
|  | { | ||
|  |    static void do_nothing() | ||
|  |    { | ||
|  |       init.do_nothing(); | ||
|  |    } | ||
|  | private: | ||
|  |    struct initializer | ||
|  |    { | ||
|  |       initializer() | ||
|  |       { | ||
|  |          F(); | ||
|  |       } | ||
|  |       void do_nothing()const{} | ||
|  |    }; | ||
|  |    static const initializer init; | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, const T& (*F)(void)> | ||
|  | typename constant_initializer<T, F>::initializer const constant_initializer<T, F>::init; | ||
|  | 
 | ||
|  | template <class T> | ||
|  | const T& get_constant_ln2() | ||
|  | { | ||
|  |    static BOOST_MP_THREAD_LOCAL T result; | ||
|  |    static BOOST_MP_THREAD_LOCAL bool b = false; | ||
|  |    static BOOST_MP_THREAD_LOCAL long digits = boost::multiprecision::detail::digits2<number<T> >::value(); | ||
|  |    if(!b || (digits != boost::multiprecision::detail::digits2<number<T> >::value())) | ||
|  |    { | ||
|  |       calc_log2(result, boost::multiprecision::detail::digits2<number<T, et_on> >::value()); | ||
|  |       b = true; | ||
|  |       digits = boost::multiprecision::detail::digits2<number<T> >::value(); | ||
|  |    } | ||
|  | 
 | ||
|  |    constant_initializer<T, &get_constant_ln2<T> >::do_nothing(); | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | #ifndef BOOST_MP_THREAD_LOCAL | ||
|  | #error 1 | ||
|  | #endif | ||
|  | 
 | ||
|  | template <class T> | ||
|  | const T& get_constant_e() | ||
|  | { | ||
|  |    static BOOST_MP_THREAD_LOCAL T result; | ||
|  |    static BOOST_MP_THREAD_LOCAL bool b = false; | ||
|  |    static BOOST_MP_THREAD_LOCAL long digits = boost::multiprecision::detail::digits2<number<T> >::value(); | ||
|  |    if(!b || (digits != boost::multiprecision::detail::digits2<number<T> >::value())) | ||
|  |    { | ||
|  |       calc_e(result, boost::multiprecision::detail::digits2<number<T, et_on> >::value()); | ||
|  |       b = true; | ||
|  |       digits = boost::multiprecision::detail::digits2<number<T> >::value(); | ||
|  |    } | ||
|  | 
 | ||
|  |    constant_initializer<T, &get_constant_e<T> >::do_nothing(); | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | const T& get_constant_pi() | ||
|  | { | ||
|  |    static BOOST_MP_THREAD_LOCAL T result; | ||
|  |    static BOOST_MP_THREAD_LOCAL bool b = false; | ||
|  |    static BOOST_MP_THREAD_LOCAL long digits = boost::multiprecision::detail::digits2<number<T> >::value(); | ||
|  |    if(!b || (digits != boost::multiprecision::detail::digits2<number<T> >::value())) | ||
|  |    { | ||
|  |       calc_pi(result, boost::multiprecision::detail::digits2<number<T, et_on> >::value()); | ||
|  |       b = true; | ||
|  |       digits = boost::multiprecision::detail::digits2<number<T> >::value(); | ||
|  |    } | ||
|  | 
 | ||
|  |    constant_initializer<T, &get_constant_pi<T> >::do_nothing(); | ||
|  | 
 | ||
|  |    return result; | ||
|  | } | ||
|  | 
 |