js8call/.svn/pristine/83/835b8e166504b8ad87692d434aa472d03df82b16.svn-base

2216 lines
83 KiB
Plaintext
Raw Normal View History

2018-02-08 21:28:33 -05:00
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_VECTOR_SPARSE_
#define _BOOST_UBLAS_VECTOR_SPARSE_
#include <boost/numeric/ublas/storage_sparse.hpp>
#include <boost/numeric/ublas/vector_expression.hpp>
#include <boost/numeric/ublas/detail/vector_assign.hpp>
#if BOOST_UBLAS_TYPE_CHECK
#include <boost/numeric/ublas/vector.hpp>
#endif
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
#ifdef BOOST_UBLAS_STRICT_VECTOR_SPARSE
template<class V>
class sparse_vector_element:
public container_reference<V> {
public:
typedef V vector_type;
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
typedef const value_type &const_reference;
typedef value_type *pointer;
private:
// Proxied element operations
void get_d () const {
pointer p = (*this) ().find_element (i_);
if (p)
d_ = *p;
else
d_ = value_type/*zero*/();
}
void set (const value_type &s) const {
pointer p = (*this) ().find_element (i_);
if (!p)
(*this) ().insert_element (i_, s);
else
*p = s;
}
public:
// Construction and destruction
sparse_vector_element (vector_type &v, size_type i):
container_reference<vector_type> (v), i_ (i) {
}
BOOST_UBLAS_INLINE
sparse_vector_element (const sparse_vector_element &p):
container_reference<vector_type> (p), i_ (p.i_) {}
BOOST_UBLAS_INLINE
~sparse_vector_element () {
}
// Assignment
BOOST_UBLAS_INLINE
sparse_vector_element &operator = (const sparse_vector_element &p) {
// Overide the implict copy assignment
p.get_d ();
set (p.d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_vector_element &operator = (const D &d) {
set (d);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_vector_element &operator += (const D &d) {
get_d ();
d_ += d;
set (d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_vector_element &operator -= (const D &d) {
get_d ();
d_ -= d;
set (d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_vector_element &operator *= (const D &d) {
get_d ();
d_ *= d;
set (d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_vector_element &operator /= (const D &d) {
get_d ();
d_ /= d;
set (d_);
return *this;
}
// Comparison
template<class D>
BOOST_UBLAS_INLINE
bool operator == (const D &d) const {
get_d ();
return d_ == d;
}
template<class D>
BOOST_UBLAS_INLINE
bool operator != (const D &d) const {
get_d ();
return d_ != d;
}
// Conversion - weak link in proxy as d_ is not a perfect alias for the element
BOOST_UBLAS_INLINE
operator const_reference () const {
get_d ();
return d_;
}
// Conversion to reference - may be invalidated
BOOST_UBLAS_INLINE
value_type& ref () const {
const pointer p = (*this) ().find_element (i_);
if (!p)
return (*this) ().insert_element (i_, value_type/*zero*/());
else
return *p;
}
private:
size_type i_;
mutable value_type d_;
};
/*
* Generalise explicit reference access
*/
namespace detail {
template <class R>
struct element_reference {
typedef R& reference;
static reference get_reference (reference r)
{
return r;
}
};
template <class V>
struct element_reference<sparse_vector_element<V> > {
typedef typename V::value_type& reference;
static reference get_reference (const sparse_vector_element<V>& sve)
{
return sve.ref ();
}
};
}
template <class VER>
typename detail::element_reference<VER>::reference ref (VER& ver) {
return detail::element_reference<VER>::get_reference (ver);
}
template <class VER>
typename detail::element_reference<VER>::reference ref (const VER& ver) {
return detail::element_reference<VER>::get_reference (ver);
}
template<class V>
struct type_traits<sparse_vector_element<V> > {
typedef typename V::value_type element_type;
typedef type_traits<sparse_vector_element<V> > self_type;
typedef typename type_traits<element_type>::value_type value_type;
typedef typename type_traits<element_type>::const_reference const_reference;
typedef sparse_vector_element<V> reference;
typedef typename type_traits<element_type>::real_type real_type;
typedef typename type_traits<element_type>::precision_type precision_type;
static const unsigned plus_complexity = type_traits<element_type>::plus_complexity;
static const unsigned multiplies_complexity = type_traits<element_type>::multiplies_complexity;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return type_traits<element_type>::real (t);
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference t) {
return type_traits<element_type>::imag (t);
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return type_traits<element_type>::conj (t);
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return type_traits<element_type>::type_abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
return type_traits<element_type>::type_sqrt (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return type_traits<element_type>::norm_1 (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return type_traits<element_type>::norm_2 (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return type_traits<element_type>::norm_inf (t);
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return type_traits<element_type>::equals (t1, t2);
}
};
template<class V1, class T2>
struct promote_traits<sparse_vector_element<V1>, T2> {
typedef typename promote_traits<typename sparse_vector_element<V1>::value_type, T2>::promote_type promote_type;
};
template<class T1, class V2>
struct promote_traits<T1, sparse_vector_element<V2> > {
typedef typename promote_traits<T1, typename sparse_vector_element<V2>::value_type>::promote_type promote_type;
};
template<class V1, class V2>
struct promote_traits<sparse_vector_element<V1>, sparse_vector_element<V2> > {
typedef typename promote_traits<typename sparse_vector_element<V1>::value_type,
typename sparse_vector_element<V2>::value_type>::promote_type promote_type;
};
#endif
/** \brief Index map based sparse vector
*
* A sparse vector of values of type T of variable size. The sparse storage type A can be
* \c std::map<size_t, T> or \c map_array<size_t, T>. This means that only non-zero elements
* are effectively stored.
*
* For a \f$n\f$-dimensional sparse vector, and 0 <= i < n the non-zero elements \f$v_i\f$
* are mapped to consecutive elements of the associative container, i.e. for elements
* \f$k = v_{i_1}\f$ and \f$k + 1 = v_{i_2}\f$ of the container, holds \f$i_1 < i_2\f$.
*
* Supported parameters for the adapted array are \c map_array<std::size_t, T> and
* \c map_std<std::size_t, T>. The latter is equivalent to \c std::map<std::size_t, T>.
*
* \tparam T the type of object stored in the vector (like double, float, complex, etc...)
* \tparam A the type of Storage array
*/
template<class T, class A>
class mapped_vector:
public vector_container<mapped_vector<T, A> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef mapped_vector<T, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef A array_type;
typedef const value_type &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
typedef typename detail::map_traits<A,T>::reference reference;
#else
typedef sparse_vector_element<self_type> reference;
#endif
typedef const vector_reference<const self_type> const_closure_type;
typedef vector_reference<self_type> closure_type;
typedef self_type vector_temporary_type;
typedef sparse_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
mapped_vector ():
vector_container<self_type> (),
size_ (0), data_ () {}
BOOST_UBLAS_INLINE
mapped_vector (size_type size, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (size), data_ () {
detail::map_reserve (data(), restrict_capacity (non_zeros));
}
BOOST_UBLAS_INLINE
mapped_vector (const mapped_vector &v):
vector_container<self_type> (),
size_ (v.size_), data_ (v.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (ae ().size ()), data_ () {
detail::map_reserve (data(), restrict_capacity (non_zeros));
vector_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return detail::map_capacity (data ());
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return data (). size ();
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
private:
BOOST_UBLAS_INLINE
size_type restrict_capacity (size_type non_zeros) const {
non_zeros = (std::min) (non_zeros, size_);
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
size_ = size;
if (preserve) {
data ().erase (data ().lower_bound(size_), data ().end());
}
else {
data ().clear ();
}
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros = 0, bool preserve = true) {
detail::map_reserve (data (), restrict_capacity (non_zeros));
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i) const {
const_subiterator_type it (data ().find (i));
if (it == data ().end ())
return 0;
BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ()); // broken map
return &(*it).second;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
const_subiterator_type it (data ().find (i));
if (it == data ().end ())
return zero_;
BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ()); // broken map
return (*it).second;
}
BOOST_UBLAS_INLINE
true_reference ref (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
std::pair<subiterator_type, bool> ii (data ().insert (typename array_type::value_type (i, value_type/*zero*/())));
BOOST_UBLAS_CHECK ((ii.first)->first == i, internal_logic ()); // broken map
return (ii.first)->second;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
return ref (i);
#else
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return reference (*this, i);
#endif
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
// Element assignment
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, const_reference t) {
std::pair<subiterator_type, bool> ii = data ().insert (typename array_type::value_type (i, t));
BOOST_UBLAS_CHECK (ii.second, bad_index ()); // duplicate element
BOOST_UBLAS_CHECK ((ii.first)->first == i, internal_logic ()); // broken map
if (!ii.second) // existing element
(ii.first)->second = t;
return (ii.first)->second;
}
BOOST_UBLAS_INLINE
void erase_element (size_type i) {
subiterator_type it = data ().find (i);
if (it == data ().end ())
return;
data ().erase (it);
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
data ().clear ();
}
// Assignment
BOOST_UBLAS_INLINE
mapped_vector &operator = (const mapped_vector &v) {
if (this != &v) {
size_ = v.size_;
data () = v.data ();
}
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_vector &operator = (const vector_container<C> &v) {
resize (v ().size (), false);
assign (v);
return *this;
}
BOOST_UBLAS_INLINE
mapped_vector &assign_temporary (mapped_vector &v) {
swap (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector &operator = (const vector_expression<AE> &ae) {
self_type temporary (ae, detail::map_capacity (data()));
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
// Computed assignment
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector &operator += (const vector_expression<AE> &ae) {
self_type temporary (*this + ae, detail::map_capacity (data()));
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_vector &operator += (const vector_container<C> &v) {
plus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector &operator -= (const vector_expression<AE> &ae) {
self_type temporary (*this - ae, detail::map_capacity (data()));
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_vector &operator -= (const vector_container<C> &v) {
minus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector &minus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
mapped_vector &operator *= (const AT &at) {
vector_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
mapped_vector &operator /= (const AT &at) {
vector_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (mapped_vector &v) {
if (this != &v) {
std::swap (size_, v.size_);
data ().swap (v.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (mapped_vector &v1, mapped_vector &v2) {
v1.swap (v2);
}
// Iterator types
private:
// Use storage iterator
typedef typename A::const_iterator const_subiterator_type;
typedef typename A::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
subiterator_type it (data ().find (i));
BOOST_UBLAS_CHECK (it != data ().end(), bad_index ());
BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ()); // broken map
return it->second;
}
public:
class const_iterator;
class iterator;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator find (size_type i) const {
return const_iterator (*this, data ().lower_bound (i));
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator find (size_type i) {
return iterator (*this, data ().lower_bound (i));
}
class const_iterator:
public container_const_reference<mapped_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator, value_type> {
public:
typedef typename mapped_vector::value_type value_type;
typedef typename mapped_vector::difference_type difference_type;
typedef typename mapped_vector::const_reference reference;
typedef const typename mapped_vector::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &v, const const_subiterator_type &it):
container_const_reference<self_type> (v), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*it_).second;
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
BOOST_UBLAS_CHECK ((*it_).first < (*this) ().size (), bad_index ());
return (*it_).first;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator begin () const {
return const_iterator (*this, data ().begin ());
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return const_iterator (*this, data ().end ());
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
class iterator:
public container_reference<mapped_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator, value_type> {
public:
typedef typename mapped_vector::value_type value_type;
typedef typename mapped_vector::difference_type difference_type;
typedef typename mapped_vector::true_reference reference;
typedef typename mapped_vector::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator (self_type &v, const subiterator_type &it):
container_reference<self_type> (v), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -- () {
-- it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*it_).second;
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
BOOST_UBLAS_CHECK ((*it_).first < (*this) ().size (), bad_index ());
return (*it_).first;
}
// Assignment
BOOST_UBLAS_INLINE
iterator &operator = (const iterator &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
BOOST_UBLAS_INLINE
iterator begin () {
return iterator (*this, data ().begin ());
}
BOOST_UBLAS_INLINE
iterator end () {
return iterator (*this, data ().end ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s (size_);
ar & serialization::make_nvp("size",s);
if (Archive::is_loading::value) {
size_ = s;
}
ar & serialization::make_nvp("data", data_);
}
private:
size_type size_;
array_type data_;
static const value_type zero_;
};
template<class T, class A>
const typename mapped_vector<T, A>::value_type mapped_vector<T, A>::zero_ = value_type/*zero*/();
// Thanks to Kresimir Fresl for extending this to cover different index bases.
/** \brief Compressed array based sparse vector
*
* a sparse vector of values of type T of variable size. The non zero values are stored as
* two seperate arrays: an index array and a value array. The index array is always sorted
* and there is at most one entry for each index. Inserting an element can be time consuming.
* If the vector contains a few zero entries, then it is better to have a normal vector.
* If the vector has a very high dimension with a few non-zero values, then this vector is
* very memory efficient (at the cost of a few more computations).
*
* For a \f$n\f$-dimensional compressed vector and \f$0 \leq i < n\f$ the non-zero elements
* \f$v_i\f$ are mapped to consecutive elements of the index and value container, i.e. for
* elements \f$k = v_{i_1}\f$ and \f$k + 1 = v_{i_2}\f$ of these containers holds \f$i_1 < i_2\f$.
*
* Supported parameters for the adapted array (indices and values) are \c unbounded_array<> ,
* \c bounded_array<> and \c std::vector<>.
*
* \tparam T the type of object stored in the vector (like double, float, complex, etc...)
* \tparam IB the index base of the compressed vector. Default is 0. Other supported value is 1
* \tparam IA the type of adapted array for indices. Default is \c unbounded_array<std::size_t>
* \tparam TA the type of adapted array for values. Default is unbounded_array<T>
*/
template<class T, std::size_t IB, class IA, class TA>
class compressed_vector:
public vector_container<compressed_vector<T, IB, IA, TA> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef compressed_vector<T, IB, IA, TA> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_container<self_type>::operator ();
#endif
// ISSUE require type consistency check
// is_convertable (IA::size_type, TA::size_type)
typedef typename IA::value_type size_type;
typedef typename IA::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
typedef T &reference;
#else
typedef sparse_vector_element<self_type> reference;
#endif
typedef IA index_array_type;
typedef TA value_array_type;
typedef const vector_reference<const self_type> const_closure_type;
typedef vector_reference<self_type> closure_type;
typedef self_type vector_temporary_type;
typedef sparse_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
compressed_vector ():
vector_container<self_type> (),
size_ (0), capacity_ (restrict_capacity (0)), filled_ (0),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
explicit BOOST_UBLAS_INLINE
compressed_vector (size_type size, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (size), capacity_ (restrict_capacity (non_zeros)), filled_ (0),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
BOOST_UBLAS_INLINE
compressed_vector (const compressed_vector &v):
vector_container<self_type> (),
size_ (v.size_), capacity_ (v.capacity_), filled_ (v.filled_),
index_data_ (v.index_data_), value_data_ (v.value_data_) {
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)), filled_ (0),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
vector_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return filled_;
}
// Storage accessors
BOOST_UBLAS_INLINE
static size_type index_base () {
return IB;
}
BOOST_UBLAS_INLINE
typename index_array_type::size_type filled () const {
return filled_;
}
BOOST_UBLAS_INLINE
const index_array_type &index_data () const {
return index_data_;
}
BOOST_UBLAS_INLINE
const value_array_type &value_data () const {
return value_data_;
}
BOOST_UBLAS_INLINE
void set_filled (const typename index_array_type::size_type & filled) {
filled_ = filled;
storage_invariants ();
}
BOOST_UBLAS_INLINE
index_array_type &index_data () {
return index_data_;
}
BOOST_UBLAS_INLINE
value_array_type &value_data () {
return value_data_;
}
// Resizing
private:
BOOST_UBLAS_INLINE
size_type restrict_capacity (size_type non_zeros) const {
non_zeros = (std::max) (non_zeros, size_type (1));
non_zeros = (std::min) (non_zeros, size_);
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
size_ = size;
capacity_ = restrict_capacity (capacity_);
if (preserve) {
index_data_. resize (capacity_, size_type ());
value_data_. resize (capacity_, value_type ());
filled_ = (std::min) (capacity_, filled_);
while ((filled_ > 0) && (zero_based(index_data_[filled_ - 1]) >= size)) {
--filled_;
}
}
else {
index_data_. resize (capacity_);
value_data_. resize (capacity_);
filled_ = 0;
}
storage_invariants ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros, bool preserve = true) {
capacity_ = restrict_capacity (non_zeros);
if (preserve) {
index_data_. resize (capacity_, size_type ());
value_data_. resize (capacity_, value_type ());
filled_ = (std::min) (capacity_, filled_);
}
else {
index_data_. resize (capacity_);
value_data_. resize (capacity_);
filled_ = 0;
}
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i) const {
const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return 0;
return &value_data_ [it - index_data_.begin ()];
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return zero_;
return value_data_ [it - index_data_.begin ()];
}
BOOST_UBLAS_INLINE
true_reference ref (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return insert_element (i, value_type/*zero*/());
else
return value_data_ [it - index_data_.begin ()];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
return ref (i) ;
#else
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return reference (*this, i);
#endif
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
// Element assignment
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i), bad_index ()); // duplicate element
if (filled_ >= capacity_)
reserve (2 * capacity_, true);
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
// ISSUE max_capacity limit due to difference_type
typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
BOOST_UBLAS_CHECK (filled_ == 0 || filled_ == typename index_array_type::size_type (n) || *it != k_based (i), internal_logic ()); // duplicate found by lower_bound
++ filled_;
it = index_data_.begin () + n;
std::copy_backward (it, index_data_.begin () + filled_ - 1, index_data_.begin () + filled_);
*it = k_based (i);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy_backward (itt, value_data_.begin () + filled_ - 1, value_data_.begin () + filled_);
*itt = t;
storage_invariants ();
return *itt;
}
BOOST_UBLAS_INLINE
void erase_element (size_type i) {
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) {
std::copy (it + 1, index_data_.begin () + filled_, it);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy (itt + 1, value_data_.begin () + filled_, itt);
-- filled_;
}
storage_invariants ();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
filled_ = 0;
storage_invariants ();
}
// Assignment
BOOST_UBLAS_INLINE
compressed_vector &operator = (const compressed_vector &v) {
if (this != &v) {
size_ = v.size_;
capacity_ = v.capacity_;
filled_ = v.filled_;
index_data_ = v.index_data_;
value_data_ = v.value_data_;
}
storage_invariants ();
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_vector &operator = (const vector_container<C> &v) {
resize (v ().size (), false);
assign (v);
return *this;
}
BOOST_UBLAS_INLINE
compressed_vector &assign_temporary (compressed_vector &v) {
swap (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &operator = (const vector_expression<AE> &ae) {
self_type temporary (ae, capacity_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
// Computed assignment
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &operator += (const vector_expression<AE> &ae) {
self_type temporary (*this + ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_vector &operator += (const vector_container<C> &v) {
plus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &operator -= (const vector_expression<AE> &ae) {
self_type temporary (*this - ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_vector &operator -= (const vector_container<C> &v) {
minus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &minus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
compressed_vector &operator *= (const AT &at) {
vector_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
compressed_vector &operator /= (const AT &at) {
vector_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (compressed_vector &v) {
if (this != &v) {
std::swap (size_, v.size_);
std::swap (capacity_, v.capacity_);
std::swap (filled_, v.filled_);
index_data_.swap (v.index_data_);
value_data_.swap (v.value_data_);
}
storage_invariants ();
}
BOOST_UBLAS_INLINE
friend void swap (compressed_vector &v1, compressed_vector &v2) {
v1.swap (v2);
}
// Back element insertion and erasure
BOOST_UBLAS_INLINE
void push_back (size_type i, const_reference t) {
BOOST_UBLAS_CHECK (filled_ == 0 || index_data_ [filled_ - 1] < k_based (i), external_logic ());
if (filled_ >= capacity_)
reserve (2 * capacity_, true);
BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
index_data_ [filled_] = k_based (i);
value_data_ [filled_] = t;
++ filled_;
storage_invariants ();
}
BOOST_UBLAS_INLINE
void pop_back () {
BOOST_UBLAS_CHECK (filled_ > 0, external_logic ());
-- filled_;
storage_invariants ();
}
// Iterator types
private:
// Use index array iterator
typedef typename IA::const_iterator const_subiterator_type;
typedef typename IA::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
BOOST_UBLAS_CHECK (it != index_data_.begin () + filled_ && *it == k_based (i), bad_index ());
return value_data_ [it - index_data_.begin ()];
}
public:
class const_iterator;
class iterator;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator find (size_type i) const {
return const_iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator find (size_type i) {
return iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
}
class const_iterator:
public container_const_reference<compressed_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator, value_type> {
public:
typedef typename compressed_vector::value_type value_type;
typedef typename compressed_vector::difference_type difference_type;
typedef typename compressed_vector::const_reference reference;
typedef const typename compressed_vector::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &v, const const_subiterator_type &it):
container_const_reference<self_type> (v), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
return (*this) ().zero_based (*it_);
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size_);
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
class iterator:
public container_reference<compressed_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator, value_type> {
public:
typedef typename compressed_vector::value_type value_type;
typedef typename compressed_vector::difference_type difference_type;
typedef typename compressed_vector::true_reference reference;
typedef typename compressed_vector::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator (self_type &v, const subiterator_type &it):
container_reference<self_type> (v), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -- () {
-- it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
return (*this) ().zero_based (*it_);
}
// Assignment
BOOST_UBLAS_INLINE
iterator &operator = (const iterator &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
BOOST_UBLAS_INLINE
iterator begin () {
return find (0);
}
BOOST_UBLAS_INLINE
iterator end () {
return find (size_);
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s (size_);
ar & serialization::make_nvp("size",s);
if (Archive::is_loading::value) {
size_ = s;
}
// ISSUE: filled may be much less than capacity
// ISSUE: index_data_ and value_data_ are undefined between filled and capacity (trouble with 'nan'-values)
ar & serialization::make_nvp("capacity", capacity_);
ar & serialization::make_nvp("filled", filled_);
ar & serialization::make_nvp("index_data", index_data_);
ar & serialization::make_nvp("value_data", value_data_);
storage_invariants();
}
private:
void storage_invariants () const
{
BOOST_UBLAS_CHECK (capacity_ == index_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (filled_ <= capacity_, internal_logic ());
BOOST_UBLAS_CHECK ((0 == filled_) || (zero_based(index_data_[filled_ - 1]) < size_), internal_logic ());
}
size_type size_;
typename index_array_type::size_type capacity_;
typename index_array_type::size_type filled_;
index_array_type index_data_;
value_array_type value_data_;
static const value_type zero_;
BOOST_UBLAS_INLINE
static size_type zero_based (size_type k_based_index) {
return k_based_index - IB;
}
BOOST_UBLAS_INLINE
static size_type k_based (size_type zero_based_index) {
return zero_based_index + IB;
}
friend class iterator;
friend class const_iterator;
};
template<class T, std::size_t IB, class IA, class TA>
const typename compressed_vector<T, IB, IA, TA>::value_type compressed_vector<T, IB, IA, TA>::zero_ = value_type/*zero*/();
// Thanks to Kresimir Fresl for extending this to cover different index bases.
/** \brief Coordimate array based sparse vector
*
* a sparse vector of values of type \c T of variable size. The non zero values are stored
* as two seperate arrays: an index array and a value array. The arrays may be out of order
* with multiple entries for each vector element. If there are multiple values for the same
* index the sum of these values is the real value. It is way more efficient for inserting values
* than a \c compressed_vector but less memory efficient. Also linearly parsing a vector can
* be longer in specific cases than a \c compressed_vector.
*
* For a n-dimensional sorted coordinate vector and \f$ 0 \leq i < n\f$ the non-zero elements
* \f$v_i\f$ are mapped to consecutive elements of the index and value container, i.e. for
* elements \f$k = v_{i_1}\f$ and \f$k + 1 = v_{i_2}\f$ of these containers holds \f$i_1 < i_2\f$.
*
* Supported parameters for the adapted array (indices and values) are \c unbounded_array<> ,
* \c bounded_array<> and \c std::vector<>.
*
* \tparam T the type of object stored in the vector (like double, float, complex, etc...)
* \tparam IB the index base of the compressed vector. Default is 0. Other supported value is 1
* \tparam IA the type of adapted array for indices. Default is \c unbounded_array<std::size_t>
* \tparam TA the type of adapted array for values. Default is unbounded_array<T>
*/
template<class T, std::size_t IB, class IA, class TA>
class coordinate_vector:
public vector_container<coordinate_vector<T, IB, IA, TA> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef coordinate_vector<T, IB, IA, TA> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_container<self_type>::operator ();
#endif
// ISSUE require type consistency check
// is_convertable (IA::size_type, TA::size_type)
typedef typename IA::value_type size_type;
typedef typename IA::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
typedef T &reference;
#else
typedef sparse_vector_element<self_type> reference;
#endif
typedef IA index_array_type;
typedef TA value_array_type;
typedef const vector_reference<const self_type> const_closure_type;
typedef vector_reference<self_type> closure_type;
typedef self_type vector_temporary_type;
typedef sparse_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
coordinate_vector ():
vector_container<self_type> (),
size_ (0), capacity_ (restrict_capacity (0)),
filled_ (0), sorted_filled_ (filled_), sorted_ (true),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
explicit BOOST_UBLAS_INLINE
coordinate_vector (size_type size, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (size), capacity_ (restrict_capacity (non_zeros)),
filled_ (0), sorted_filled_ (filled_), sorted_ (true),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
BOOST_UBLAS_INLINE
coordinate_vector (const coordinate_vector &v):
vector_container<self_type> (),
size_ (v.size_), capacity_ (v.capacity_),
filled_ (v.filled_), sorted_filled_ (v.sorted_filled_), sorted_ (v.sorted_),
index_data_ (v.index_data_), value_data_ (v.value_data_) {
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)),
filled_ (0), sorted_filled_ (filled_), sorted_ (true),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
vector_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return filled_;
}
// Storage accessors
BOOST_UBLAS_INLINE
static size_type index_base () {
return IB;
}
BOOST_UBLAS_INLINE
typename index_array_type::size_type filled () const {
return filled_;
}
BOOST_UBLAS_INLINE
const index_array_type &index_data () const {
return index_data_;
}
BOOST_UBLAS_INLINE
const value_array_type &value_data () const {
return value_data_;
}
BOOST_UBLAS_INLINE
void set_filled (const typename index_array_type::size_type &sorted, const typename index_array_type::size_type &filled) {
sorted_filled_ = sorted;
filled_ = filled;
storage_invariants ();
}
BOOST_UBLAS_INLINE
index_array_type &index_data () {
return index_data_;
}
BOOST_UBLAS_INLINE
value_array_type &value_data () {
return value_data_;
}
// Resizing
private:
BOOST_UBLAS_INLINE
size_type restrict_capacity (size_type non_zeros) const {
// minimum non_zeros
non_zeros = (std::max) (non_zeros, size_type (1));
// ISSUE no maximum as coordinate may contain inserted duplicates
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
if (preserve)
sort (); // remove duplicate elements.
size_ = size;
capacity_ = restrict_capacity (capacity_);
if (preserve) {
index_data_. resize (capacity_, size_type ());
value_data_. resize (capacity_, value_type ());
filled_ = (std::min) (capacity_, filled_);
while ((filled_ > 0) && (zero_based(index_data_[filled_ - 1]) >= size)) {
--filled_;
}
}
else {
index_data_. resize (capacity_);
value_data_. resize (capacity_);
filled_ = 0;
}
sorted_filled_ = filled_;
storage_invariants ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros, bool preserve = true) {
if (preserve)
sort (); // remove duplicate elements.
capacity_ = restrict_capacity (non_zeros);
if (preserve) {
index_data_. resize (capacity_, size_type ());
value_data_. resize (capacity_, value_type ());
filled_ = (std::min) (capacity_, filled_);
}
else {
index_data_. resize (capacity_);
value_data_. resize (capacity_);
filled_ = 0;
}
sorted_filled_ = filled_;
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i) const {
sort ();
const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return 0;
return &value_data_ [it - index_data_.begin ()];
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
sort ();
const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return zero_;
return value_data_ [it - index_data_.begin ()];
}
BOOST_UBLAS_INLINE
true_reference ref (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
sort ();
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return insert_element (i, value_type/*zero*/());
else
return value_data_ [it - index_data_.begin ()];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
return ref (i);
#else
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return reference (*this, i);
#endif
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
// Element assignment
BOOST_UBLAS_INLINE
void append_element (size_type i, const_reference t) {
if (filled_ >= capacity_)
reserve (2 * filled_, true);
BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
index_data_ [filled_] = k_based (i);
value_data_ [filled_] = t;
++ filled_;
sorted_ = false;
storage_invariants ();
}
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i), bad_index ()); // duplicate element
append_element (i, t);
return value_data_ [filled_ - 1];
}
BOOST_UBLAS_INLINE
void erase_element (size_type i) {
sort ();
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) {
std::copy (it + 1, index_data_.begin () + filled_, it);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy (itt + 1, value_data_.begin () + filled_, itt);
-- filled_;
sorted_filled_ = filled_;
}
storage_invariants ();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
filled_ = 0;
sorted_filled_ = filled_;
sorted_ = true;
storage_invariants ();
}
// Assignment
BOOST_UBLAS_INLINE
coordinate_vector &operator = (const coordinate_vector &v) {
if (this != &v) {
size_ = v.size_;
capacity_ = v.capacity_;
filled_ = v.filled_;
sorted_filled_ = v.sorted_filled_;
sorted_ = v.sorted_;
index_data_ = v.index_data_;
value_data_ = v.value_data_;
}
storage_invariants ();
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
coordinate_vector &operator = (const vector_container<C> &v) {
resize (v ().size (), false);
assign (v);
return *this;
}
BOOST_UBLAS_INLINE
coordinate_vector &assign_temporary (coordinate_vector &v) {
swap (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector &operator = (const vector_expression<AE> &ae) {
self_type temporary (ae, capacity_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
// Computed assignment
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector &operator += (const vector_expression<AE> &ae) {
self_type temporary (*this + ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
coordinate_vector &operator += (const vector_container<C> &v) {
plus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector &operator -= (const vector_expression<AE> &ae) {
self_type temporary (*this - ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
coordinate_vector &operator -= (const vector_container<C> &v) {
minus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_vector &minus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
coordinate_vector &operator *= (const AT &at) {
vector_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
coordinate_vector &operator /= (const AT &at) {
vector_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (coordinate_vector &v) {
if (this != &v) {
std::swap (size_, v.size_);
std::swap (capacity_, v.capacity_);
std::swap (filled_, v.filled_);
std::swap (sorted_filled_, v.sorted_filled_);
std::swap (sorted_, v.sorted_);
index_data_.swap (v.index_data_);
value_data_.swap (v.value_data_);
}
storage_invariants ();
}
BOOST_UBLAS_INLINE
friend void swap (coordinate_vector &v1, coordinate_vector &v2) {
v1.swap (v2);
}
// replacement if STL lower bound algorithm for use of inplace_merge
size_type lower_bound (size_type beg, size_type end, size_type target) const {
while (end > beg) {
size_type mid = (beg + end) / 2;
if (index_data_[mid] < index_data_[target]) {
beg = mid + 1;
} else {
end = mid;
}
}
return beg;
}
// specialized replacement of STL inplace_merge to avoid compilation
// problems with respect to the array_triple iterator
void inplace_merge (size_type beg, size_type mid, size_type end) const {
size_type len_lef = mid - beg;
size_type len_rig = end - mid;
if (len_lef == 1 && len_rig == 1) {
if (index_data_[mid] < index_data_[beg]) {
std::swap(index_data_[beg], index_data_[mid]);
std::swap(value_data_[beg], value_data_[mid]);
}
} else if (len_lef > 0 && len_rig > 0) {
size_type lef_mid, rig_mid;
if (len_lef >= len_rig) {
lef_mid = (beg + mid) / 2;
rig_mid = lower_bound(mid, end, lef_mid);
} else {
rig_mid = (mid + end) / 2;
lef_mid = lower_bound(beg, mid, rig_mid);
}
std::rotate(&index_data_[0] + lef_mid, &index_data_[0] + mid, &index_data_[0] + rig_mid);
std::rotate(&value_data_[0] + lef_mid, &value_data_[0] + mid, &value_data_[0] + rig_mid);
size_type new_mid = lef_mid + rig_mid - mid;
inplace_merge(beg, lef_mid, new_mid);
inplace_merge(new_mid, rig_mid, end);
}
}
// Sorting and summation of duplicates
BOOST_UBLAS_INLINE
void sort () const {
if (! sorted_ && filled_ > 0) {
typedef index_pair_array<index_array_type, value_array_type> array_pair;
array_pair ipa (filled_, index_data_, value_data_);
#ifndef BOOST_UBLAS_COO_ALWAYS_DO_FULL_SORT
const typename array_pair::iterator iunsorted = ipa.begin () + sorted_filled_;
// sort new elements and merge
std::sort (iunsorted, ipa.end ());
inplace_merge(0, sorted_filled_, filled_);
#else
const typename array_pair::iterator iunsorted = ipa.begin ();
std::sort (iunsorted, ipa.end ());
#endif
// sum duplicates with += and remove
size_type filled = 0;
for (size_type i = 1; i < filled_; ++ i) {
if (index_data_ [filled] != index_data_ [i]) {
++ filled;
if (filled != i) {
index_data_ [filled] = index_data_ [i];
value_data_ [filled] = value_data_ [i];
}
} else {
value_data_ [filled] += value_data_ [i];
}
}
filled_ = filled + 1;
sorted_filled_ = filled_;
sorted_ = true;
storage_invariants ();
}
}
// Back element insertion and erasure
BOOST_UBLAS_INLINE
void push_back (size_type i, const_reference t) {
// must maintain sort order
BOOST_UBLAS_CHECK (sorted_ && (filled_ == 0 || index_data_ [filled_ - 1] < k_based (i)), external_logic ());
if (filled_ >= capacity_)
reserve (2 * filled_, true);
BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
index_data_ [filled_] = k_based (i);
value_data_ [filled_] = t;
++ filled_;
sorted_filled_ = filled_;
storage_invariants ();
}
BOOST_UBLAS_INLINE
void pop_back () {
// ISSUE invariants could be simpilfied if sorted required as precondition
BOOST_UBLAS_CHECK (filled_ > 0, external_logic ());
-- filled_;
sorted_filled_ = (std::min) (sorted_filled_, filled_);
sorted_ = sorted_filled_ = filled_;
storage_invariants ();
}
// Iterator types
private:
// Use index array iterator
typedef typename IA::const_iterator const_subiterator_type;
typedef typename IA::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
sort ();
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
BOOST_UBLAS_CHECK (it != index_data_.begin () + filled_ && *it == k_based (i), bad_index ());
return value_data_ [it - index_data_.begin ()];
}
public:
class const_iterator;
class iterator;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator find (size_type i) const {
sort ();
return const_iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator find (size_type i) {
sort ();
return iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
}
class const_iterator:
public container_const_reference<coordinate_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator, value_type> {
public:
typedef typename coordinate_vector::value_type value_type;
typedef typename coordinate_vector::difference_type difference_type;
typedef typename coordinate_vector::const_reference reference;
typedef const typename coordinate_vector::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &v, const const_subiterator_type &it):
container_const_reference<self_type> (v), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
return (*this) ().zero_based (*it_);
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size_);
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end();
}
class iterator:
public container_reference<coordinate_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator, value_type> {
public:
typedef typename coordinate_vector::value_type value_type;
typedef typename coordinate_vector::difference_type difference_type;
typedef typename coordinate_vector::true_reference reference;
typedef typename coordinate_vector::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator (self_type &v, const subiterator_type &it):
container_reference<self_type> (v), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -- () {
-- it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
return (*this) ().zero_based (*it_);
}
// Assignment
BOOST_UBLAS_INLINE
iterator &operator = (const iterator &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
BOOST_UBLAS_INLINE
iterator begin () {
return find (0);
}
BOOST_UBLAS_INLINE
iterator end () {
return find (size_);
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s (size_);
ar & serialization::make_nvp("size",s);
if (Archive::is_loading::value) {
size_ = s;
}
// ISSUE: filled may be much less than capacity
// ISSUE: index_data_ and value_data_ are undefined between filled and capacity (trouble with 'nan'-values)
ar & serialization::make_nvp("capacity", capacity_);
ar & serialization::make_nvp("filled", filled_);
ar & serialization::make_nvp("sorted_filled", sorted_filled_);
ar & serialization::make_nvp("sorted", sorted_);
ar & serialization::make_nvp("index_data", index_data_);
ar & serialization::make_nvp("value_data", value_data_);
storage_invariants();
}
private:
void storage_invariants () const
{
BOOST_UBLAS_CHECK (capacity_ == index_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (filled_ <= capacity_, internal_logic ());
BOOST_UBLAS_CHECK (sorted_filled_ <= filled_, internal_logic ());
BOOST_UBLAS_CHECK (sorted_ == (sorted_filled_ == filled_), internal_logic ());
BOOST_UBLAS_CHECK ((0 == filled_) || (zero_based(index_data_[filled_ - 1]) < size_), internal_logic ());
}
size_type size_;
size_type capacity_;
mutable typename index_array_type::size_type filled_;
mutable typename index_array_type::size_type sorted_filled_;
mutable bool sorted_;
mutable index_array_type index_data_;
mutable value_array_type value_data_;
static const value_type zero_;
BOOST_UBLAS_INLINE
static size_type zero_based (size_type k_based_index) {
return k_based_index - IB;
}
BOOST_UBLAS_INLINE
static size_type k_based (size_type zero_based_index) {
return zero_based_index + IB;
}
friend class iterator;
friend class const_iterator;
};
template<class T, std::size_t IB, class IA, class TA>
const typename coordinate_vector<T, IB, IA, TA>::value_type coordinate_vector<T, IB, IA, TA>::zero_ = value_type/*zero*/();
}}}
#endif