444 lines
19 KiB
Plaintext
444 lines
19 KiB
Plaintext
|
//---------------------------------------------------------------------------//
|
||
|
// Copyright (c) 2015 Jakub Szuppe <j.szuppe@gmail.com>
|
||
|
//
|
||
|
// Distributed under the Boost Software License, Version 1.0
|
||
|
// See accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt
|
||
|
//
|
||
|
// See http://boostorg.github.com/compute for more information.
|
||
|
//---------------------------------------------------------------------------//
|
||
|
|
||
|
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
|
||
|
#define BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include <boost/compute/types.hpp>
|
||
|
#include <boost/compute/command_queue.hpp>
|
||
|
#include <boost/compute/algorithm/copy.hpp>
|
||
|
#include <boost/compute/allocator/pinned_allocator.hpp>
|
||
|
#include <boost/compute/container/vector.hpp>
|
||
|
#include <boost/compute/detail/meta_kernel.hpp>
|
||
|
#include <boost/compute/detail/iterator_range_size.hpp>
|
||
|
#include <boost/compute/detail/parameter_cache.hpp>
|
||
|
#include <boost/compute/memory/local_buffer.hpp>
|
||
|
#include <boost/compute/type_traits/type_name.hpp>
|
||
|
#include <boost/compute/utility/program_cache.hpp>
|
||
|
|
||
|
namespace boost {
|
||
|
namespace compute {
|
||
|
namespace detail {
|
||
|
|
||
|
template<class InputIterator>
|
||
|
bool find_extrema_with_reduce_requirements_met(InputIterator first,
|
||
|
InputIterator last,
|
||
|
command_queue &queue)
|
||
|
{
|
||
|
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
|
||
|
|
||
|
const device &device = queue.get_device();
|
||
|
|
||
|
// device must have dedicated local memory storage
|
||
|
// otherwise reduction would be highly inefficient
|
||
|
if(device.get_info<CL_DEVICE_LOCAL_MEM_TYPE>() != CL_LOCAL)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
|
||
|
// local memory size in bytes (per compute unit)
|
||
|
const size_t local_mem_size = device.get_info<CL_DEVICE_LOCAL_MEM_SIZE>();
|
||
|
|
||
|
std::string cache_key = std::string("__boost_find_extrema_reduce_")
|
||
|
+ type_name<input_type>();
|
||
|
// load parameters
|
||
|
boost::shared_ptr<parameter_cache> parameters =
|
||
|
detail::parameter_cache::get_global_cache(device);
|
||
|
|
||
|
// Get preferred work group size
|
||
|
size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
|
||
|
|
||
|
work_group_size = (std::min)(max_work_group_size, work_group_size);
|
||
|
|
||
|
// local memory size needed to perform parallel reduction
|
||
|
size_t required_local_mem_size = 0;
|
||
|
// indices size
|
||
|
required_local_mem_size += sizeof(uint_) * work_group_size;
|
||
|
// values size
|
||
|
required_local_mem_size += sizeof(input_type) * work_group_size;
|
||
|
|
||
|
// at least 4 work groups per compute unit otherwise reduction
|
||
|
// would be highly inefficient
|
||
|
return ((required_local_mem_size * 4) <= local_mem_size);
|
||
|
}
|
||
|
|
||
|
/// \internal_
|
||
|
/// Algorithm finds the first extremum in given range, i.e., with the lowest
|
||
|
/// index.
|
||
|
///
|
||
|
/// If \p use_input_idx is false, it's assumed that input data is ordered by
|
||
|
/// increasing index and \p input_idx is not used in the algorithm.
|
||
|
template<class InputIterator, class ResultIterator, class Compare>
|
||
|
inline void find_extrema_with_reduce(InputIterator input,
|
||
|
vector<uint_>::iterator input_idx,
|
||
|
size_t count,
|
||
|
ResultIterator result,
|
||
|
vector<uint_>::iterator result_idx,
|
||
|
size_t work_groups_no,
|
||
|
size_t work_group_size,
|
||
|
Compare compare,
|
||
|
const bool find_minimum,
|
||
|
const bool use_input_idx,
|
||
|
command_queue &queue)
|
||
|
{
|
||
|
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
|
||
|
|
||
|
const context &context = queue.get_context();
|
||
|
|
||
|
meta_kernel k("find_extrema_reduce");
|
||
|
size_t count_arg = k.add_arg<uint_>("count");
|
||
|
size_t block_arg = k.add_arg<input_type *>(memory_object::local_memory, "block");
|
||
|
size_t block_idx_arg = k.add_arg<uint_ *>(memory_object::local_memory, "block_idx");
|
||
|
|
||
|
k <<
|
||
|
// Work item global id
|
||
|
k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
|
||
|
|
||
|
// Index of element that will be read from input buffer
|
||
|
k.decl<uint_>("idx") << " = gid;\n" <<
|
||
|
|
||
|
k.decl<input_type>("acc") << ";\n" <<
|
||
|
k.decl<uint_>("acc_idx") << ";\n" <<
|
||
|
"if(gid < count) {\n" <<
|
||
|
// Real index of currently best element
|
||
|
"#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
|
||
|
k.var<uint_>("acc_idx") << " = " << input_idx[k.var<uint_>("idx")] << ";\n" <<
|
||
|
"#else\n" <<
|
||
|
k.var<uint_>("acc_idx") << " = idx;\n" <<
|
||
|
"#endif\n" <<
|
||
|
|
||
|
// Init accumulator with first[get_global_id(0)]
|
||
|
"acc = " << input[k.var<uint_>("idx")] << ";\n" <<
|
||
|
"idx += get_global_size(0);\n" <<
|
||
|
"}\n" <<
|
||
|
|
||
|
k.decl<bool>("compare_result") << ";\n" <<
|
||
|
k.decl<bool>("equal") << ";\n\n" <<
|
||
|
"while( idx < count ){\n" <<
|
||
|
// Next element
|
||
|
k.decl<input_type>("next") << " = " << input[k.var<uint_>("idx")] << ";\n" <<
|
||
|
"#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
|
||
|
k.decl<uint_>("next_idx") << " = " << input_idx[k.var<uint_>("idx")] << ";\n" <<
|
||
|
"#endif\n" <<
|
||
|
|
||
|
// Comparison between currently best element (acc) and next element
|
||
|
"#ifdef BOOST_COMPUTE_FIND_MAXIMUM\n" <<
|
||
|
"compare_result = " << compare(k.var<input_type>("next"),
|
||
|
k.var<input_type>("acc")) << ";\n" <<
|
||
|
"# ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
|
||
|
"equal = !compare_result && !" <<
|
||
|
compare(k.var<input_type>("acc"),
|
||
|
k.var<input_type>("next")) << ";\n" <<
|
||
|
"# endif\n" <<
|
||
|
"#else\n" <<
|
||
|
"compare_result = " << compare(k.var<input_type>("acc"),
|
||
|
k.var<input_type>("next")) << ";\n" <<
|
||
|
"# ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
|
||
|
"equal = !compare_result && !" <<
|
||
|
compare(k.var<input_type>("next"),
|
||
|
k.var<input_type>("acc")) << ";\n" <<
|
||
|
"# endif\n" <<
|
||
|
"#endif\n" <<
|
||
|
|
||
|
// save the winner
|
||
|
"acc = compare_result ? acc : next;\n" <<
|
||
|
"#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
|
||
|
"acc_idx = compare_result ? " <<
|
||
|
"acc_idx : " <<
|
||
|
"(equal ? min(acc_idx, next_idx) : next_idx);\n" <<
|
||
|
"#else\n" <<
|
||
|
"acc_idx = compare_result ? acc_idx : idx;\n" <<
|
||
|
"#endif\n" <<
|
||
|
"idx += get_global_size(0);\n" <<
|
||
|
"}\n\n" <<
|
||
|
|
||
|
// Work item local id
|
||
|
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
|
||
|
"block[lid] = acc;\n" <<
|
||
|
"block_idx[lid] = acc_idx;\n" <<
|
||
|
"barrier(CLK_LOCAL_MEM_FENCE);\n" <<
|
||
|
|
||
|
k.decl<uint_>("group_offset") <<
|
||
|
" = count - (get_local_size(0) * get_group_id(0));\n\n";
|
||
|
|
||
|
k <<
|
||
|
"#pragma unroll\n"
|
||
|
"for(" << k.decl<uint_>("offset") << " = " << uint_(work_group_size) << " / 2; offset > 0; " <<
|
||
|
"offset = offset / 2) {\n" <<
|
||
|
"if((lid < offset) && ((lid + offset) < group_offset)) { \n" <<
|
||
|
k.decl<input_type>("mine") << " = block[lid];\n" <<
|
||
|
k.decl<input_type>("other") << " = block[lid+offset];\n" <<
|
||
|
"#ifdef BOOST_COMPUTE_FIND_MAXIMUM\n" <<
|
||
|
"compare_result = " << compare(k.var<input_type>("other"),
|
||
|
k.var<input_type>("mine")) << ";\n" <<
|
||
|
"equal = !compare_result && !" <<
|
||
|
compare(k.var<input_type>("mine"),
|
||
|
k.var<input_type>("other")) << ";\n" <<
|
||
|
"#else\n" <<
|
||
|
"compare_result = " << compare(k.var<input_type>("mine"),
|
||
|
k.var<input_type>("other")) << ";\n" <<
|
||
|
"equal = !compare_result && !" <<
|
||
|
compare(k.var<input_type>("other"),
|
||
|
k.var<input_type>("mine")) << ";\n" <<
|
||
|
"#endif\n" <<
|
||
|
"block[lid] = compare_result ? mine : other;\n" <<
|
||
|
k.decl<uint_>("mine_idx") << " = block_idx[lid];\n" <<
|
||
|
k.decl<uint_>("other_idx") << " = block_idx[lid+offset];\n" <<
|
||
|
"block_idx[lid] = compare_result ? " <<
|
||
|
"mine_idx : " <<
|
||
|
"(equal ? min(mine_idx, other_idx) : other_idx);\n" <<
|
||
|
"}\n"
|
||
|
"barrier(CLK_LOCAL_MEM_FENCE);\n" <<
|
||
|
"}\n\n" <<
|
||
|
|
||
|
// write block result to global output
|
||
|
"if(lid == 0){\n" <<
|
||
|
result[k.var<uint_>("get_group_id(0)")] << " = block[0];\n" <<
|
||
|
result_idx[k.var<uint_>("get_group_id(0)")] << " = block_idx[0];\n" <<
|
||
|
"}";
|
||
|
|
||
|
std::string options;
|
||
|
if(!find_minimum){
|
||
|
options = "-DBOOST_COMPUTE_FIND_MAXIMUM";
|
||
|
}
|
||
|
if(use_input_idx){
|
||
|
options += " -DBOOST_COMPUTE_USE_INPUT_IDX";
|
||
|
}
|
||
|
|
||
|
kernel kernel = k.compile(context, options);
|
||
|
|
||
|
kernel.set_arg(count_arg, static_cast<uint_>(count));
|
||
|
kernel.set_arg(block_arg, local_buffer<input_type>(work_group_size));
|
||
|
kernel.set_arg(block_idx_arg, local_buffer<uint_>(work_group_size));
|
||
|
|
||
|
queue.enqueue_1d_range_kernel(kernel,
|
||
|
0,
|
||
|
work_groups_no * work_group_size,
|
||
|
work_group_size);
|
||
|
}
|
||
|
|
||
|
template<class InputIterator, class ResultIterator, class Compare>
|
||
|
inline void find_extrema_with_reduce(InputIterator input,
|
||
|
size_t count,
|
||
|
ResultIterator result,
|
||
|
vector<uint_>::iterator result_idx,
|
||
|
size_t work_groups_no,
|
||
|
size_t work_group_size,
|
||
|
Compare compare,
|
||
|
const bool find_minimum,
|
||
|
command_queue &queue)
|
||
|
{
|
||
|
// dummy will not be used
|
||
|
buffer_iterator<uint_> dummy = result_idx;
|
||
|
return find_extrema_with_reduce(
|
||
|
input, dummy, count, result, result_idx, work_groups_no,
|
||
|
work_group_size, compare, find_minimum, false, queue
|
||
|
);
|
||
|
}
|
||
|
|
||
|
template<class InputIterator, class Compare>
|
||
|
InputIterator find_extrema_with_reduce(InputIterator first,
|
||
|
InputIterator last,
|
||
|
Compare compare,
|
||
|
const bool find_minimum,
|
||
|
command_queue &queue)
|
||
|
{
|
||
|
typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
|
||
|
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
|
||
|
|
||
|
const context &context = queue.get_context();
|
||
|
const device &device = queue.get_device();
|
||
|
|
||
|
// Getting information about used queue and device
|
||
|
const size_t compute_units_no = device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
|
||
|
const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
|
||
|
|
||
|
const size_t count = detail::iterator_range_size(first, last);
|
||
|
|
||
|
std::string cache_key = std::string("__boost_find_extrema_with_reduce_")
|
||
|
+ type_name<input_type>();
|
||
|
|
||
|
// load parameters
|
||
|
boost::shared_ptr<parameter_cache> parameters =
|
||
|
detail::parameter_cache::get_global_cache(device);
|
||
|
|
||
|
// get preferred work group size and preferred number
|
||
|
// of work groups per compute unit
|
||
|
size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
|
||
|
size_t work_groups_per_cu = parameters->get(cache_key, "wgpcu", 100);
|
||
|
|
||
|
// calculate work group size and number of work groups
|
||
|
work_group_size = (std::min)(max_work_group_size, work_group_size);
|
||
|
size_t work_groups_no = compute_units_no * work_groups_per_cu;
|
||
|
work_groups_no = (std::min)(
|
||
|
work_groups_no,
|
||
|
static_cast<size_t>(std::ceil(float(count) / work_group_size))
|
||
|
);
|
||
|
|
||
|
// phase I: finding candidates for extremum
|
||
|
|
||
|
// device buffors for extremum candidates and their indices
|
||
|
// each work-group computes its candidate
|
||
|
vector<input_type> candidates(work_groups_no, context);
|
||
|
vector<uint_> candidates_idx(work_groups_no, context);
|
||
|
|
||
|
// finding candidates for first extremum and their indices
|
||
|
find_extrema_with_reduce(
|
||
|
first, count, candidates.begin(), candidates_idx.begin(),
|
||
|
work_groups_no, work_group_size, compare, find_minimum, queue
|
||
|
);
|
||
|
|
||
|
// phase II: finding extremum from among the candidates
|
||
|
|
||
|
// zero-copy buffers for final result (value and index)
|
||
|
vector<input_type, ::boost::compute::pinned_allocator<input_type> >
|
||
|
result(1, context);
|
||
|
vector<uint_, ::boost::compute::pinned_allocator<uint_> >
|
||
|
result_idx(1, context);
|
||
|
|
||
|
// get extremum from among the candidates
|
||
|
find_extrema_with_reduce(
|
||
|
candidates.begin(), candidates_idx.begin(), work_groups_no, result.begin(),
|
||
|
result_idx.begin(), 1, work_group_size, compare, find_minimum, true, queue
|
||
|
);
|
||
|
|
||
|
// mapping extremum index to host
|
||
|
uint_* result_idx_host_ptr =
|
||
|
static_cast<uint_*>(
|
||
|
queue.enqueue_map_buffer(
|
||
|
result_idx.get_buffer(), command_queue::map_read,
|
||
|
0, sizeof(uint_)
|
||
|
)
|
||
|
);
|
||
|
|
||
|
return first + static_cast<difference_type>(*result_idx_host_ptr);
|
||
|
}
|
||
|
|
||
|
template<class InputIterator>
|
||
|
InputIterator find_extrema_with_reduce(InputIterator first,
|
||
|
InputIterator last,
|
||
|
::boost::compute::less<
|
||
|
typename std::iterator_traits<
|
||
|
InputIterator
|
||
|
>::value_type
|
||
|
>
|
||
|
compare,
|
||
|
const bool find_minimum,
|
||
|
command_queue &queue)
|
||
|
{
|
||
|
typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
|
||
|
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
|
||
|
|
||
|
const context &context = queue.get_context();
|
||
|
const device &device = queue.get_device();
|
||
|
|
||
|
// Getting information about used queue and device
|
||
|
const size_t compute_units_no = device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
|
||
|
const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
|
||
|
|
||
|
const size_t count = detail::iterator_range_size(first, last);
|
||
|
|
||
|
std::string cache_key = std::string("__boost_find_extrema_with_reduce_")
|
||
|
+ type_name<input_type>();
|
||
|
|
||
|
// load parameters
|
||
|
boost::shared_ptr<parameter_cache> parameters =
|
||
|
detail::parameter_cache::get_global_cache(device);
|
||
|
|
||
|
// get preferred work group size and preferred number
|
||
|
// of work groups per compute unit
|
||
|
size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
|
||
|
size_t work_groups_per_cu = parameters->get(cache_key, "wgpcu", 64);
|
||
|
|
||
|
// calculate work group size and number of work groups
|
||
|
work_group_size = (std::min)(max_work_group_size, work_group_size);
|
||
|
size_t work_groups_no = compute_units_no * work_groups_per_cu;
|
||
|
work_groups_no = (std::min)(
|
||
|
work_groups_no,
|
||
|
static_cast<size_t>(std::ceil(float(count) / work_group_size))
|
||
|
);
|
||
|
|
||
|
// phase I: finding candidates for extremum
|
||
|
|
||
|
// device buffors for extremum candidates and their indices
|
||
|
// each work-group computes its candidate
|
||
|
// zero-copy buffers are used to eliminate copying data back to host
|
||
|
vector<input_type, ::boost::compute::pinned_allocator<input_type> >
|
||
|
candidates(work_groups_no, context);
|
||
|
vector<uint_, ::boost::compute::pinned_allocator <uint_> >
|
||
|
candidates_idx(work_groups_no, context);
|
||
|
|
||
|
// finding candidates for first extremum and their indices
|
||
|
find_extrema_with_reduce(
|
||
|
first, count, candidates.begin(), candidates_idx.begin(),
|
||
|
work_groups_no, work_group_size, compare, find_minimum, queue
|
||
|
);
|
||
|
|
||
|
// phase II: finding extremum from among the candidates
|
||
|
|
||
|
// mapping candidates and their indices to host
|
||
|
input_type* candidates_host_ptr =
|
||
|
static_cast<input_type*>(
|
||
|
queue.enqueue_map_buffer(
|
||
|
candidates.get_buffer(), command_queue::map_read,
|
||
|
0, work_groups_no * sizeof(input_type)
|
||
|
)
|
||
|
);
|
||
|
|
||
|
uint_* candidates_idx_host_ptr =
|
||
|
static_cast<uint_*>(
|
||
|
queue.enqueue_map_buffer(
|
||
|
candidates_idx.get_buffer(), command_queue::map_read,
|
||
|
0, work_groups_no * sizeof(uint_)
|
||
|
)
|
||
|
);
|
||
|
|
||
|
input_type* i = candidates_host_ptr;
|
||
|
uint_* idx = candidates_idx_host_ptr;
|
||
|
uint_* extremum_idx = idx;
|
||
|
input_type extremum = *candidates_host_ptr;
|
||
|
i++; idx++;
|
||
|
|
||
|
// find extremum (serial) from among the candidates on host
|
||
|
if(!find_minimum) {
|
||
|
while(idx != (candidates_idx_host_ptr + work_groups_no)) {
|
||
|
input_type next = *i;
|
||
|
bool compare_result = next > extremum;
|
||
|
bool equal = next == extremum;
|
||
|
extremum = compare_result ? next : extremum;
|
||
|
extremum_idx = compare_result ? idx : extremum_idx;
|
||
|
extremum_idx = equal ? ((*extremum_idx < *idx) ? extremum_idx : idx) : extremum_idx;
|
||
|
idx++, i++;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
while(idx != (candidates_idx_host_ptr + work_groups_no)) {
|
||
|
input_type next = *i;
|
||
|
bool compare_result = next < extremum;
|
||
|
bool equal = next == extremum;
|
||
|
extremum = compare_result ? next : extremum;
|
||
|
extremum_idx = compare_result ? idx : extremum_idx;
|
||
|
extremum_idx = equal ? ((*extremum_idx < *idx) ? extremum_idx : idx) : extremum_idx;
|
||
|
idx++, i++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return first + static_cast<difference_type>(*extremum_idx);
|
||
|
}
|
||
|
|
||
|
} // end detail namespace
|
||
|
} // end compute namespace
|
||
|
} // end boost namespace
|
||
|
|
||
|
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
|