608 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			608 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								// boost\math\special_functions\negative_binomial.hpp
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Copyright Paul A. Bristow 2007.
							 | 
						||
| 
								 | 
							
								// Copyright John Maddock 2007.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								// Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt
							 | 
						||
| 
								 | 
							
								// or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// http://en.wikipedia.org/wiki/negative_binomial_distribution
							 | 
						||
| 
								 | 
							
								// http://mathworld.wolfram.com/NegativeBinomialDistribution.html
							 | 
						||
| 
								 | 
							
								// http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// The negative binomial distribution NegativeBinomialDistribution[n, p]
							 | 
						||
| 
								 | 
							
								// is the distribution of the number (k) of failures that occur in a sequence of trials before
							 | 
						||
| 
								 | 
							
								// r successes have occurred, where the probability of success in each trial is p.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// In a sequence of Bernoulli trials or events
							 | 
						||
| 
								 | 
							
								// (independent, yes or no, succeed or fail) with success_fraction probability p,
							 | 
						||
| 
								 | 
							
								// negative_binomial is the probability that k or fewer failures
							 | 
						||
| 
								 | 
							
								// preceed the r th trial's success.
							 | 
						||
| 
								 | 
							
								// random variable k is the number of failures (NOT the probability).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Negative_binomial distribution is a discrete probability distribution.
							 | 
						||
| 
								 | 
							
								// But note that the negative binomial distribution
							 | 
						||
| 
								 | 
							
								// (like others including the binomial, Poisson & Bernoulli)
							 | 
						||
| 
								 | 
							
								// is strictly defined as a discrete function: only integral values of k are envisaged.
							 | 
						||
| 
								 | 
							
								// However because of the method of calculation using a continuous gamma function,
							 | 
						||
| 
								 | 
							
								// it is convenient to treat it as if a continous function,
							 | 
						||
| 
								 | 
							
								// and permit non-integral values of k.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// However, by default the policy is to use discrete_quantile_policy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// To enforce the strict mathematical model, users should use conversion
							 | 
						||
| 
								 | 
							
								// on k outside this function to ensure that k is integral.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// MATHCAD cumulative negative binomial pnbinom(k, n, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Implementation note: much greater speed, and perhaps greater accuracy,
							 | 
						||
| 
								 | 
							
								// might be achieved for extreme values by using a normal approximation.
							 | 
						||
| 
								 | 
							
								// This is NOT been tested or implemented.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/fwd.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/complement.hpp> // complement.
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/fpclassify.hpp> // isnan.
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/roots.hpp> // for root finding.
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/type_traits/is_floating_point.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/type_traits/is_integral.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/type_traits/is_same.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/mpl/if.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <limits> // using std::numeric_limits;
							 | 
						||
| 
								 | 
							
								#include <utility>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined (BOOST_MSVC)
							 | 
						||
| 
								 | 
							
								#  pragma warning(push)
							 | 
						||
| 
								 | 
							
								// This believed not now necessary, so commented out.
							 | 
						||
| 
								 | 
							
								//#  pragma warning(disable: 4702) // unreachable code.
							 | 
						||
| 
								 | 
							
								// in domain_error_imp in error_handling.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  namespace math
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    namespace negative_binomial_detail
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      // Common error checking routines for negative binomial distribution functions:
							 | 
						||
| 
								 | 
							
								      template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								      inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        if( !(boost::math::isfinite)(r) || (r <= 0) )
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          *result = policies::raise_domain_error<RealType>(
							 | 
						||
| 
								 | 
							
								            function,
							 | 
						||
| 
								 | 
							
								            "Number of successes argument is %1%, but must be > 0 !", r, pol);
							 | 
						||
| 
								 | 
							
								          return false;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        return true;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          *result = policies::raise_domain_error<RealType>(
							 | 
						||
| 
								 | 
							
								            function,
							 | 
						||
| 
								 | 
							
								            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
							 | 
						||
| 
								 | 
							
								          return false;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        return true;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								      inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        return check_success_fraction(function, p, result, pol)
							 | 
						||
| 
								 | 
							
								          && check_successes(function, r, result, pol);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								      inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        if(check_dist(function, r, p, result, pol) == false)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          return false;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if( !(boost::math::isfinite)(k) || (k < 0) )
							 | 
						||
| 
								 | 
							
								        { // Check k failures.
							 | 
						||
| 
								 | 
							
								          *result = policies::raise_domain_error<RealType>(
							 | 
						||
| 
								 | 
							
								            function,
							 | 
						||
| 
								 | 
							
								            "Number of failures argument is %1%, but must be >= 0 !", k, pol);
							 | 
						||
| 
								 | 
							
								          return false;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        return true;
							 | 
						||
| 
								 | 
							
								      } // Check_dist_and_k
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								      inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        if((check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          return false;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        return true;
							 | 
						||
| 
								 | 
							
								      } // check_dist_and_prob
							 | 
						||
| 
								 | 
							
								    } //  namespace negative_binomial_detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType = double, class Policy = policies::policy<> >
							 | 
						||
| 
								 | 
							
								    class negative_binomial_distribution
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								    public:
							 | 
						||
| 
								 | 
							
								      typedef RealType value_type;
							 | 
						||
| 
								 | 
							
								      typedef Policy policy_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p)
							 | 
						||
| 
								 | 
							
								      { // Constructor.
							 | 
						||
| 
								 | 
							
								        RealType result;
							 | 
						||
| 
								 | 
							
								        negative_binomial_detail::check_dist(
							 | 
						||
| 
								 | 
							
								          "negative_binomial_distribution<%1%>::negative_binomial_distribution",
							 | 
						||
| 
								 | 
							
								          m_r, // Check successes r > 0.
							 | 
						||
| 
								 | 
							
								          m_p, // Check success_fraction 0 <= p <= 1.
							 | 
						||
| 
								 | 
							
								          &result, Policy());
							 | 
						||
| 
								 | 
							
								      } // negative_binomial_distribution constructor.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Private data getter class member functions.
							 | 
						||
| 
								 | 
							
								      RealType success_fraction() const
							 | 
						||
| 
								 | 
							
								      { // Probability of success as fraction in range 0 to 1.
							 | 
						||
| 
								 | 
							
								        return m_p;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      RealType successes() const
							 | 
						||
| 
								 | 
							
								      { // Total number of successes r.
							 | 
						||
| 
								 | 
							
								        return m_r;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static RealType find_lower_bound_on_p(
							 | 
						||
| 
								 | 
							
								        RealType trials,
							 | 
						||
| 
								 | 
							
								        RealType successes,
							 | 
						||
| 
								 | 
							
								        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p";
							 | 
						||
| 
								 | 
							
								        RealType result = 0;  // of error checks.
							 | 
						||
| 
								 | 
							
								        RealType failures = trials - successes;
							 | 
						||
| 
								 | 
							
								        if(false == detail::check_probability(function, alpha, &result, Policy())
							 | 
						||
| 
								 | 
							
								          && negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								          function, successes, RealType(0), failures, &result, Policy()))
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          return result;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        // Use complement ibeta_inv function for lower bound.
							 | 
						||
| 
								 | 
							
								        // This is adapted from the corresponding binomial formula
							 | 
						||
| 
								 | 
							
								        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
							 | 
						||
| 
								 | 
							
								        // This is a Clopper-Pearson interval, and may be overly conservative,
							 | 
						||
| 
								 | 
							
								        // see also "A Simple Improved Inferential Method for Some
							 | 
						||
| 
								 | 
							
								        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
							 | 
						||
| 
								 | 
							
								        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
							 | 
						||
| 
								 | 
							
								        //
							 | 
						||
| 
								 | 
							
								        return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
							 | 
						||
| 
								 | 
							
								      } // find_lower_bound_on_p
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static RealType find_upper_bound_on_p(
							 | 
						||
| 
								 | 
							
								        RealType trials,
							 | 
						||
| 
								 | 
							
								        RealType successes,
							 | 
						||
| 
								 | 
							
								        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p";
							 | 
						||
| 
								 | 
							
								        RealType result = 0;  // of error checks.
							 | 
						||
| 
								 | 
							
								        RealType failures = trials - successes;
							 | 
						||
| 
								 | 
							
								        if(false == negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								          function, successes, RealType(0), failures, &result, Policy())
							 | 
						||
| 
								 | 
							
								          && detail::check_probability(function, alpha, &result, Policy()))
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          return result;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if(failures == 0)
							 | 
						||
| 
								 | 
							
								           return 1;
							 | 
						||
| 
								 | 
							
								        // Use complement ibetac_inv function for upper bound.
							 | 
						||
| 
								 | 
							
								        // Note adjusted failures value: *not* failures+1 as usual.
							 | 
						||
| 
								 | 
							
								        // This is adapted from the corresponding binomial formula
							 | 
						||
| 
								 | 
							
								        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
							 | 
						||
| 
								 | 
							
								        // This is a Clopper-Pearson interval, and may be overly conservative,
							 | 
						||
| 
								 | 
							
								        // see also "A Simple Improved Inferential Method for Some
							 | 
						||
| 
								 | 
							
								        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
							 | 
						||
| 
								 | 
							
								        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
							 | 
						||
| 
								 | 
							
								        //
							 | 
						||
| 
								 | 
							
								        return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
							 | 
						||
| 
								 | 
							
								      } // find_upper_bound_on_p
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Estimate number of trials :
							 | 
						||
| 
								 | 
							
								      // "How many trials do I need to be P% sure of seeing k or fewer failures?"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static RealType find_minimum_number_of_trials(
							 | 
						||
| 
								 | 
							
								        RealType k,     // number of failures (k >= 0).
							 | 
						||
| 
								 | 
							
								        RealType p,     // success fraction 0 <= p <= 1.
							 | 
						||
| 
								 | 
							
								        RealType alpha) // risk level threshold 0 <= alpha <= 1.
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials";
							 | 
						||
| 
								 | 
							
								        // Error checks:
							 | 
						||
| 
								 | 
							
								        RealType result = 0;
							 | 
						||
| 
								 | 
							
								        if(false == negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								          function, RealType(1), p, k, &result, Policy())
							 | 
						||
| 
								 | 
							
								          && detail::check_probability(function, alpha, &result, Policy()))
							 | 
						||
| 
								 | 
							
								        { return result; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
							 | 
						||
| 
								 | 
							
								        return result + k;
							 | 
						||
| 
								 | 
							
								      } // RealType find_number_of_failures
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static RealType find_maximum_number_of_trials(
							 | 
						||
| 
								 | 
							
								        RealType k,     // number of failures (k >= 0).
							 | 
						||
| 
								 | 
							
								        RealType p,     // success fraction 0 <= p <= 1.
							 | 
						||
| 
								 | 
							
								        RealType alpha) // risk level threshold 0 <= alpha <= 1.
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials";
							 | 
						||
| 
								 | 
							
								        // Error checks:
							 | 
						||
| 
								 | 
							
								        RealType result = 0;
							 | 
						||
| 
								 | 
							
								        if(false == negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								          function, RealType(1), p, k, &result, Policy())
							 | 
						||
| 
								 | 
							
								          &&  detail::check_probability(function, alpha, &result, Policy()))
							 | 
						||
| 
								 | 
							
								        { return result; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
							 | 
						||
| 
								 | 
							
								        return result + k;
							 | 
						||
| 
								 | 
							
								      } // RealType find_number_of_trials complemented
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    private:
							 | 
						||
| 
								 | 
							
								      RealType m_r; // successes.
							 | 
						||
| 
								 | 
							
								      RealType m_p; // success_fraction
							 | 
						||
| 
								 | 
							
								    }; // template <class RealType, class Policy> class negative_binomial_distribution
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */)
							 | 
						||
| 
								 | 
							
								    { // Range of permissible values for random variable k.
							 | 
						||
| 
								 | 
							
								       using boost::math::tools::max_value;
							 | 
						||
| 
								 | 
							
								       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */)
							 | 
						||
| 
								 | 
							
								    { // Range of supported values for random variable k.
							 | 
						||
| 
								 | 
							
								       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
							 | 
						||
| 
								 | 
							
								       using boost::math::tools::max_value;
							 | 
						||
| 
								 | 
							
								       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    { // Mean of Negative Binomial distribution = r(1-p)/p.
							 | 
						||
| 
								 | 
							
								      return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction();
							 | 
						||
| 
								 | 
							
								    } // mean
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    //template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    //inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    //{ // Median of negative_binomial_distribution is not defined.
							 | 
						||
| 
								 | 
							
								    //  return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
							 | 
						||
| 
								 | 
							
								    //} // median
							 | 
						||
| 
								 | 
							
								    // Now implemented via quantile(half) in derived accessors.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p]
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING // ADL of std functions.
							 | 
						||
| 
								 | 
							
								      return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction());
							 | 
						||
| 
								 | 
							
								    } // mode
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p))
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING // ADL of std functions.
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      return (2 - p) /
							 | 
						||
| 
								 | 
							
								        sqrt(r * (1 - p));
							 | 
						||
| 
								 | 
							
								    } // skewness
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    { // kurtosis of Negative Binomial distribution
							 | 
						||
| 
								 | 
							
								      // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								      return 3 + (6 / r) + ((p * p) / (r * (1 - p)));
							 | 
						||
| 
								 | 
							
								    } // kurtosis
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    { // kurtosis excess of Negative Binomial distribution
							 | 
						||
| 
								 | 
							
								      // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								      return (6 - p * (6-p)) / (r * (1-p));
							 | 
						||
| 
								 | 
							
								    } // kurtosis_excess
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    { // Variance of Binomial distribution = r (1-p) / p^2.
							 | 
						||
| 
								 | 
							
								      return  dist.successes() * (1 - dist.success_fraction())
							 | 
						||
| 
								 | 
							
								        / (dist.success_fraction() * dist.success_fraction());
							 | 
						||
| 
								 | 
							
								    } // variance
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    // standard_deviation provided by derived accessors.
							 | 
						||
| 
								 | 
							
								    // RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    // hazard of Negative Binomial distribution provided by derived accessors.
							 | 
						||
| 
								 | 
							
								    // RealType chf(const negative_binomial_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								    // chf of Negative Binomial distribution provided by derived accessors.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
							 | 
						||
| 
								 | 
							
								    { // Probability Density/Mass Function.
							 | 
						||
| 
								 | 
							
								      BOOST_FPU_EXCEPTION_GUARD
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType result = 0;
							 | 
						||
| 
								 | 
							
								      if(false == negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								        function,
							 | 
						||
| 
								 | 
							
								        r,
							 | 
						||
| 
								 | 
							
								        dist.success_fraction(),
							 | 
						||
| 
								 | 
							
								        k,
							 | 
						||
| 
								 | 
							
								        &result, Policy()))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        return result;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy());
							 | 
						||
| 
								 | 
							
								      // Equivalent to:
							 | 
						||
| 
								 | 
							
								      // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k);
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								    } // negative_binomial_pdf
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
							 | 
						||
| 
								 | 
							
								    { // Cumulative Distribution Function of Negative Binomial.
							 | 
						||
| 
								 | 
							
								      static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								      using boost::math::ibeta; // Regularized incomplete beta function.
							 | 
						||
| 
								 | 
							
								      // k argument may be integral, signed, or unsigned, or floating point.
							 | 
						||
| 
								 | 
							
								      // If necessary, it has already been promoted from an integral type.
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								      // Error check:
							 | 
						||
| 
								 | 
							
								      RealType result = 0;
							 | 
						||
| 
								 | 
							
								      if(false == negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								        function,
							 | 
						||
| 
								 | 
							
								        r,
							 | 
						||
| 
								 | 
							
								        dist.success_fraction(),
							 | 
						||
| 
								 | 
							
								        k,
							 | 
						||
| 
								 | 
							
								        &result, Policy()))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        return result;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy());
							 | 
						||
| 
								 | 
							
								      // Ip(r, k+1) = ibeta(r, k+1, p)
							 | 
						||
| 
								 | 
							
								      return probability;
							 | 
						||
| 
								 | 
							
								    } // cdf Cumulative Distribution Function Negative Binomial.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								      inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
							 | 
						||
| 
								 | 
							
								      { // Complemented Cumulative Distribution Function Negative Binomial.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								      using boost::math::ibetac; // Regularized incomplete beta function complement.
							 | 
						||
| 
								 | 
							
								      // k argument may be integral, signed, or unsigned, or floating point.
							 | 
						||
| 
								 | 
							
								      // If necessary, it has already been promoted from an integral type.
							 | 
						||
| 
								 | 
							
								      RealType const& k = c.param;
							 | 
						||
| 
								 | 
							
								      negative_binomial_distribution<RealType, Policy> const& dist = c.dist;
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								      // Error check:
							 | 
						||
| 
								 | 
							
								      RealType result = 0;
							 | 
						||
| 
								 | 
							
								      if(false == negative_binomial_detail::check_dist_and_k(
							 | 
						||
| 
								 | 
							
								        function,
							 | 
						||
| 
								 | 
							
								        r,
							 | 
						||
| 
								 | 
							
								        p,
							 | 
						||
| 
								 | 
							
								        k,
							 | 
						||
| 
								 | 
							
								        &result, Policy()))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        return result;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      // Calculate cdf negative binomial using the incomplete beta function.
							 | 
						||
| 
								 | 
							
								      // Use of ibeta here prevents cancellation errors in calculating
							 | 
						||
| 
								 | 
							
								      // 1-p if p is very small, perhaps smaller than machine epsilon.
							 | 
						||
| 
								 | 
							
								      // Ip(k+1, r) = ibetac(r, k+1, p)
							 | 
						||
| 
								 | 
							
								      // constrain_probability here?
							 | 
						||
| 
								 | 
							
								     RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy());
							 | 
						||
| 
								 | 
							
								      // Numerical errors might cause probability to be slightly outside the range < 0 or > 1.
							 | 
						||
| 
								 | 
							
								      // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits.
							 | 
						||
| 
								 | 
							
								      return probability;
							 | 
						||
| 
								 | 
							
								    } // cdf Cumulative Distribution Function Negative Binomial.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P)
							 | 
						||
| 
								 | 
							
								    { // Quantile, percentile/100 or Percent Point Negative Binomial function.
							 | 
						||
| 
								 | 
							
								      // Return the number of expected failures k for a given probability p.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability.
							 | 
						||
| 
								 | 
							
								      // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability.
							 | 
						||
| 
								 | 
							
								      // k argument may be integral, signed, or unsigned, or floating point.
							 | 
						||
| 
								 | 
							
								      // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y
							 | 
						||
| 
								 | 
							
								      static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING // ADL of std functions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								      RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								      // Check dist and P.
							 | 
						||
| 
								 | 
							
								      RealType result = 0;
							 | 
						||
| 
								 | 
							
								      if(false == negative_binomial_detail::check_dist_and_prob
							 | 
						||
| 
								 | 
							
								        (function, r, p, P, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        return result;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Special cases.
							 | 
						||
| 
								 | 
							
								      if (P == 1)
							 | 
						||
| 
								 | 
							
								      {  // Would need +infinity failures for total confidence.
							 | 
						||
| 
								 | 
							
								        result = policies::raise_overflow_error<RealType>(
							 | 
						||
| 
								 | 
							
								            function,
							 | 
						||
| 
								 | 
							
								            "Probability argument is 1, which implies infinite failures !", Policy());
							 | 
						||
| 
								 | 
							
								        return result;
							 | 
						||
| 
								 | 
							
								       // usually means return +std::numeric_limits<RealType>::infinity();
							 | 
						||
| 
								 | 
							
								       // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (P == 0)
							 | 
						||
| 
								 | 
							
								      { // No failures are expected if P = 0.
							 | 
						||
| 
								 | 
							
								        return 0; // Total trials will be just dist.successes.
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (P <= pow(dist.success_fraction(), dist.successes()))
							 | 
						||
| 
								 | 
							
								      { // p <= pdf(dist, 0) == cdf(dist, 0)
							 | 
						||
| 
								 | 
							
								        return 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if(p == 0)
							 | 
						||
| 
								 | 
							
								      {  // Would need +infinity failures for total confidence.
							 | 
						||
| 
								 | 
							
								         result = policies::raise_overflow_error<RealType>(
							 | 
						||
| 
								 | 
							
								            function,
							 | 
						||
| 
								 | 
							
								            "Success fraction is 0, which implies infinite failures !", Policy());
							 | 
						||
| 
								 | 
							
								         return result;
							 | 
						||
| 
								 | 
							
								         // usually means return +std::numeric_limits<RealType>::infinity();
							 | 
						||
| 
								 | 
							
								         // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      /*
							 | 
						||
| 
								 | 
							
								      // Calculate quantile of negative_binomial using the inverse incomplete beta function.
							 | 
						||
| 
								 | 
							
								      using boost::math::ibeta_invb;
							 | 
						||
| 
								 | 
							
								      return ibeta_invb(r, p, P, Policy()) - 1; //
							 | 
						||
| 
								 | 
							
								      */
							 | 
						||
| 
								 | 
							
								      RealType guess = 0;
							 | 
						||
| 
								 | 
							
								      RealType factor = 5;
							 | 
						||
| 
								 | 
							
								      if(r * r * r * P * p > 0.005)
							 | 
						||
| 
								 | 
							
								         guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      if(guess < 10)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Cornish-Fisher Negative binomial approximation not accurate in this area:
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         guess = (std::min)(RealType(r * 2), RealType(10));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Max iterations permitted:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
							 | 
						||
| 
								 | 
							
								      typedef typename Policy::discrete_quantile_type discrete_type;
							 | 
						||
| 
								 | 
							
								      return detail::inverse_discrete_quantile(
							 | 
						||
| 
								 | 
							
								         dist,
							 | 
						||
| 
								 | 
							
								         P,
							 | 
						||
| 
								 | 
							
								         false,
							 | 
						||
| 
								 | 
							
								         guess,
							 | 
						||
| 
								 | 
							
								         factor,
							 | 
						||
| 
								 | 
							
								         RealType(1),
							 | 
						||
| 
								 | 
							
								         discrete_type(),
							 | 
						||
| 
								 | 
							
								         max_iter);
							 | 
						||
| 
								 | 
							
								    } // RealType quantile(const negative_binomial_distribution dist, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								    inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
							 | 
						||
| 
								 | 
							
								    {  // Quantile or Percent Point Binomial function.
							 | 
						||
| 
								 | 
							
								       // Return the number of expected failures k for a given
							 | 
						||
| 
								 | 
							
								       // complement of the probability Q = 1 - P.
							 | 
						||
| 
								 | 
							
								       static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								       BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								       // Error checks:
							 | 
						||
| 
								 | 
							
								       RealType Q = c.param;
							 | 
						||
| 
								 | 
							
								       const negative_binomial_distribution<RealType, Policy>& dist = c.dist;
							 | 
						||
| 
								 | 
							
								       RealType p = dist.success_fraction();
							 | 
						||
| 
								 | 
							
								       RealType r = dist.successes();
							 | 
						||
| 
								 | 
							
								       RealType result = 0;
							 | 
						||
| 
								 | 
							
								       if(false == negative_binomial_detail::check_dist_and_prob(
							 | 
						||
| 
								 | 
							
								          function,
							 | 
						||
| 
								 | 
							
								          r,
							 | 
						||
| 
								 | 
							
								          p,
							 | 
						||
| 
								 | 
							
								          Q,
							 | 
						||
| 
								 | 
							
								          &result, Policy()))
							 | 
						||
| 
								 | 
							
								       {
							 | 
						||
| 
								 | 
							
								          return result;
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								       // Special cases:
							 | 
						||
| 
								 | 
							
								       //
							 | 
						||
| 
								 | 
							
								       if(Q == 1)
							 | 
						||
| 
								 | 
							
								       {  // There may actually be no answer to this question,
							 | 
						||
| 
								 | 
							
								          // since the probability of zero failures may be non-zero,
							 | 
						||
| 
								 | 
							
								          return 0; // but zero is the best we can do:
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								       if(Q == 0)
							 | 
						||
| 
								 | 
							
								       {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
							 | 
						||
| 
								 | 
							
								          // Would need +infinity failures for total confidence.
							 | 
						||
| 
								 | 
							
								          result = policies::raise_overflow_error<RealType>(
							 | 
						||
| 
								 | 
							
								             function,
							 | 
						||
| 
								 | 
							
								             "Probability argument complement is 0, which implies infinite failures !", Policy());
							 | 
						||
| 
								 | 
							
								          return result;
							 | 
						||
| 
								 | 
							
								          // usually means return +std::numeric_limits<RealType>::infinity();
							 | 
						||
| 
								 | 
							
								          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								       if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
							 | 
						||
| 
								 | 
							
								       {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
							 | 
						||
| 
								 | 
							
								          return 0; //
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								       if(p == 0)
							 | 
						||
| 
								 | 
							
								       {  // Success fraction is 0 so infinite failures to achieve certainty.
							 | 
						||
| 
								 | 
							
								          // Would need +infinity failures for total confidence.
							 | 
						||
| 
								 | 
							
								          result = policies::raise_overflow_error<RealType>(
							 | 
						||
| 
								 | 
							
								             function,
							 | 
						||
| 
								 | 
							
								             "Success fraction is 0, which implies infinite failures !", Policy());
							 | 
						||
| 
								 | 
							
								          return result;
							 | 
						||
| 
								 | 
							
								          // usually means return +std::numeric_limits<RealType>::infinity();
							 | 
						||
| 
								 | 
							
								          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								       //return ibetac_invb(r, p, Q, Policy()) -1;
							 | 
						||
| 
								 | 
							
								       RealType guess = 0;
							 | 
						||
| 
								 | 
							
								       RealType factor = 5;
							 | 
						||
| 
								 | 
							
								       if(r * r * r * (1-Q) * p > 0.005)
							 | 
						||
| 
								 | 
							
								          guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								       if(guess < 10)
							 | 
						||
| 
								 | 
							
								       {
							 | 
						||
| 
								 | 
							
								          //
							 | 
						||
| 
								 | 
							
								          // Cornish-Fisher Negative binomial approximation not accurate in this area:
							 | 
						||
| 
								 | 
							
								          //
							 | 
						||
| 
								 | 
							
								          guess = (std::min)(RealType(r * 2), RealType(10));
							 | 
						||
| 
								 | 
							
								       }
							 | 
						||
| 
								 | 
							
								       else
							 | 
						||
| 
								 | 
							
								          factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
							 | 
						||
| 
								 | 
							
								       BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
							 | 
						||
| 
								 | 
							
								       //
							 | 
						||
| 
								 | 
							
								       // Max iterations permitted:
							 | 
						||
| 
								 | 
							
								       //
							 | 
						||
| 
								 | 
							
								       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
							 | 
						||
| 
								 | 
							
								       typedef typename Policy::discrete_quantile_type discrete_type;
							 | 
						||
| 
								 | 
							
								       return detail::inverse_discrete_quantile(
							 | 
						||
| 
								 | 
							
								          dist,
							 | 
						||
| 
								 | 
							
								          Q,
							 | 
						||
| 
								 | 
							
								          true,
							 | 
						||
| 
								 | 
							
								          guess,
							 | 
						||
| 
								 | 
							
								          factor,
							 | 
						||
| 
								 | 
							
								          RealType(1),
							 | 
						||
| 
								 | 
							
								          discrete_type(),
							 | 
						||
| 
								 | 
							
								          max_iter);
							 | 
						||
| 
								 | 
							
								    } // quantile complement
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 } // namespace math
							 | 
						||
| 
								 | 
							
								} // namespace boost
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// This include must be at the end, *after* the accessors
							 | 
						||
| 
								 | 
							
								// for this distribution have been defined, in order to
							 | 
						||
| 
								 | 
							
								// keep compilers that support two-phase lookup happy.
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/detail/derived_accessors.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined (BOOST_MSVC)
							 | 
						||
| 
								 | 
							
								# pragma warning(pop)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
							 |