297 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			297 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								// Copyright Jim Bosch 2010-2012.
							 | 
						||
| 
								 | 
							
								// Copyright Stefan Seefeld 2016.
							 | 
						||
| 
								 | 
							
								// Distributed under the Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt or copy at
							 | 
						||
| 
								 | 
							
								// http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef boost_python_numpy_ndarray_hpp_
							 | 
						||
| 
								 | 
							
								#define boost_python_numpy_ndarray_hpp_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Object manager and various utilities for numpy.ndarray.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/python.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/utility/enable_if.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/type_traits/is_integral.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/python/numpy/dtype.hpp>
							 | 
						||
| 
								 | 
							
								#include <vector>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost { namespace python { namespace numpy {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @todo This could have a lot more functionality (like boost::python::numeric::array).
							 | 
						||
| 
								 | 
							
								 *        Right now all that exists is what was needed to move raw data between C++ and Python.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								class ndarray : public object
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   *  @brief An internal struct that's byte-compatible with PyArrayObject.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   *  This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
							 | 
						||
| 
								 | 
							
								   *  from the user.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  struct array_struct 
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    PyObject_HEAD
							 | 
						||
| 
								 | 
							
								    char * data;
							 | 
						||
| 
								 | 
							
								    int nd;
							 | 
						||
| 
								 | 
							
								    Py_intptr_t * shape;
							 | 
						||
| 
								 | 
							
								    Py_intptr_t * strides;
							 | 
						||
| 
								 | 
							
								    PyObject * base;
							 | 
						||
| 
								 | 
							
								    PyObject * descr;
							 | 
						||
| 
								 | 
							
								    int flags;
							 | 
						||
| 
								 | 
							
								    PyObject * weakreflist;
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Return the held Python object as an array_struct.
							 | 
						||
| 
								 | 
							
								  array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   *  @brief Enum to represent (some) of Numpy's internal flags.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   *  These don't match the actual Numpy flag values; we can't get those without including 
							 | 
						||
| 
								 | 
							
								   *  numpy/arrayobject.h or copying them directly.  That's very unfortunate.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   *  @todo I'm torn about whether this should be an enum.  It's very convenient to not
							 | 
						||
| 
								 | 
							
								   *        make these simple integer values for overloading purposes, but the need to
							 | 
						||
| 
								 | 
							
								   *        define every possible combination and custom bitwise operators is ugly.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  enum bitflag 
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2, 
							 | 
						||
| 
								 | 
							
								    ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
							 | 
						||
| 
								 | 
							
								    CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
							 | 
						||
| 
								 | 
							
								    FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
							 | 
						||
| 
								 | 
							
								    UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /// @brief Return a view of the scalar with the given dtype.
							 | 
						||
| 
								 | 
							
								  ndarray view(dtype const & dt) const;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								  /// @brief Copy the array, cast to a specified type.
							 | 
						||
| 
								 | 
							
								  ndarray astype(dtype const & dt) const;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /// @brief Copy the scalar (deep for all non-object fields).
							 | 
						||
| 
								 | 
							
								  ndarray copy() const;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /// @brief Return the size of the nth dimension.
							 | 
						||
| 
								 | 
							
								  Py_intptr_t shape(int n) const { return get_shape()[n]; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /// @brief Return the stride of the nth dimension.
							 | 
						||
| 
								 | 
							
								  Py_intptr_t strides(int n) const { return get_strides()[n]; }
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   *  @brief Return the array's raw data pointer.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   *  This returns char so stride math works properly on it.  It's pretty much
							 | 
						||
| 
								 | 
							
								   *  expected that the user will have to reinterpret_cast it.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  char * get_data() const { return get_struct()->data; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /// @brief Return the array's data-type descriptor object.
							 | 
						||
| 
								 | 
							
								  dtype get_dtype() const;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Return the object that owns the array's data, or None if the array owns its own data.
							 | 
						||
| 
								 | 
							
								  object get_base() const;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Set the object that owns the array's data.  Use with care.
							 | 
						||
| 
								 | 
							
								  void set_base(object const & base);
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Return the shape of the array as an array of integers (length == get_nd()).
							 | 
						||
| 
								 | 
							
								  Py_intptr_t const * get_shape() const { return get_struct()->shape; }
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Return the stride of the array as an array of integers (length == get_nd()).
							 | 
						||
| 
								 | 
							
								  Py_intptr_t const * get_strides() const { return get_struct()->strides; }
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Return the number of array dimensions.
							 | 
						||
| 
								 | 
							
								  int get_nd() const { return get_struct()->nd; }
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Return the array flags.
							 | 
						||
| 
								 | 
							
								  bitflag get_flags() const;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Reverse the dimensions of the array.
							 | 
						||
| 
								 | 
							
								  ndarray transpose() const;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Eliminate any unit-sized dimensions.
							 | 
						||
| 
								 | 
							
								  ndarray squeeze() const;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /// @brief Equivalent to self.reshape(*shape) in Python.
							 | 
						||
| 
								 | 
							
								  ndarray reshape(python::tuple const & shape) const;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   *  @brief If the array contains only a single element, return it as an array scalar; otherwise return
							 | 
						||
| 
								 | 
							
								   *         the array.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   *  @internal This is simply a call to PyArray_Return();
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  object scalarize() const;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Construct a new array with the given shape and data type, with data initialized to zero.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								ndarray zeros(python::tuple const & shape, dtype const & dt);
							 | 
						||
| 
								 | 
							
								ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Construct a new array with the given shape and data type, with data left uninitialized.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								ndarray empty(python::tuple const & shape, dtype const & dt);
							 | 
						||
| 
								 | 
							
								ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Construct a new array from an arbitrary Python sequence.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								ndarray array(object const & obj);
							 | 
						||
| 
								 | 
							
								ndarray array(object const & obj, dtype const & dt);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace detail 
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								ndarray from_data_impl(void * data,
							 | 
						||
| 
								 | 
							
										       dtype const & dt,
							 | 
						||
| 
								 | 
							
										       std::vector<Py_intptr_t> const & shape,
							 | 
						||
| 
								 | 
							
										       std::vector<Py_intptr_t> const & strides,
							 | 
						||
| 
								 | 
							
										       object const & owner,
							 | 
						||
| 
								 | 
							
										       bool writeable);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Container>
							 | 
						||
| 
								 | 
							
								ndarray from_data_impl(void * data,
							 | 
						||
| 
								 | 
							
										       dtype const & dt,
							 | 
						||
| 
								 | 
							
										       Container shape,
							 | 
						||
| 
								 | 
							
										       Container strides,
							 | 
						||
| 
								 | 
							
										       object const & owner,
							 | 
						||
| 
								 | 
							
										       bool writeable,
							 | 
						||
| 
								 | 
							
										       typename boost::enable_if< boost::is_integral<typename Container::value_type> >::type * enabled = NULL)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
							 | 
						||
| 
								 | 
							
								  std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
							 | 
						||
| 
								 | 
							
								  return from_data_impl(data, dt, shape_, strides_, owner, writeable);    
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								ndarray from_data_impl(void * data,
							 | 
						||
| 
								 | 
							
										       dtype const & dt,
							 | 
						||
| 
								 | 
							
										       object const & shape,
							 | 
						||
| 
								 | 
							
										       object const & strides,
							 | 
						||
| 
								 | 
							
										       object const & owner,
							 | 
						||
| 
								 | 
							
										       bool writeable);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace boost::python::numpy::detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Construct a new ndarray object from a raw pointer.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @param[in] data    Raw pointer to the first element of the array.
							 | 
						||
| 
								 | 
							
								 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
							 | 
						||
| 
								 | 
							
								 *  @param[in] shape   Shape of the array as STL container of integers; must have begin() and end().
							 | 
						||
| 
								 | 
							
								 *  @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
							 | 
						||
| 
								 | 
							
								 *  @param[in] owner   An arbitray Python object that owns that data pointer.  The array object will
							 | 
						||
| 
								 | 
							
								 *                     keep a reference to the object, and decrement it's reference count when the
							 | 
						||
| 
								 | 
							
								 *                     array goes out of scope.  Pass None at your own peril.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @todo Should probably take ranges of iterators rather than actual container objects.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename Container>
							 | 
						||
| 
								 | 
							
								inline ndarray from_data(void * data,
							 | 
						||
| 
								 | 
							
											 dtype const & dt,
							 | 
						||
| 
								 | 
							
											 Container shape,
							 | 
						||
| 
								 | 
							
											 Container strides,
							 | 
						||
| 
								 | 
							
											 python::object const & owner)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
							 | 
						||
| 
								 | 
							
								}    
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Construct a new ndarray object from a raw pointer.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @param[in] data    Raw pointer to the first element of the array.
							 | 
						||
| 
								 | 
							
								 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
							 | 
						||
| 
								 | 
							
								 *  @param[in] shape   Shape of the array as STL container of integers; must have begin() and end().
							 | 
						||
| 
								 | 
							
								 *  @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
							 | 
						||
| 
								 | 
							
								 *  @param[in] owner   An arbitray Python object that owns that data pointer.  The array object will
							 | 
						||
| 
								 | 
							
								 *                     keep a reference to the object, and decrement it's reference count when the
							 | 
						||
| 
								 | 
							
								 *                     array goes out of scope.  Pass None at your own peril.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  This overload takes a const void pointer and sets the "writeable" flag of the array to false.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @todo Should probably take ranges of iterators rather than actual container objects.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename Container>
							 | 
						||
| 
								 | 
							
								inline ndarray from_data(void const * data,
							 | 
						||
| 
								 | 
							
											 dtype const & dt,
							 | 
						||
| 
								 | 
							
											 Container shape,
							 | 
						||
| 
								 | 
							
											 Container strides,
							 | 
						||
| 
								 | 
							
											 python::object const & owner)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
							 | 
						||
| 
								 | 
							
								}    
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 *  @brief Transform an arbitrary object into a numpy array with the given requirements.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  @param[in] obj     An arbitrary python object to convert.  Arrays that meet the requirements
							 | 
						||
| 
								 | 
							
								 *                     will be passed through directly.
							 | 
						||
| 
								 | 
							
								 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
							 | 
						||
| 
								 | 
							
								 *  @param[in] nd_min  Minimum number of dimensions.
							 | 
						||
| 
								 | 
							
								 *  @param[in] nd_max  Maximum number of dimensions.
							 | 
						||
| 
								 | 
							
								 *  @param[in] flags   Bitwise OR of flags specifying additional requirements.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								ndarray from_object(object const & obj, dtype const & dt,
							 | 
						||
| 
								 | 
							
								                    int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline ndarray from_object(object const & obj, dtype const & dt,
							 | 
						||
| 
								 | 
							
								                           int nd, ndarray::bitflag flags=ndarray::NONE)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return from_object(obj, dt, nd, nd, flags);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return from_object(obj, dt, 0, 0, flags);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								ndarray from_object(object const & obj, int nd_min, int nd_max,
							 | 
						||
| 
								 | 
							
								                    ndarray::bitflag flags=ndarray::NONE);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return from_object(obj, nd, nd, flags);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return from_object(obj, 0, 0, flags);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return ndarray::bitflag(int(a) | int(b));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return ndarray::bitflag(int(a) & int(b));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace boost::python::numpy
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace converter 
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								NUMPY_OBJECT_MANAGER_TRAITS(numpy::ndarray);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}}} // namespace boost::python::converter
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |