614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  (C) Copyright John Maddock 2006.
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/precision.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/policies/error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/config.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/sign.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/cstdint.hpp>
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MATH_LOG_ROOT_ITERATIONS
							 | 
						||
| 
								 | 
							
								#  define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp>
							 | 
						||
| 
								 | 
							
								#  include BOOST_MATH_LOGGER_INCLUDE
							 | 
						||
| 
								 | 
							
								#  undef BOOST_MATH_LOGGER_INCLUDE
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								#  define BOOST_MATH_LOG_COUNT(count)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost{ namespace math{ namespace tools{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								class eps_tolerance
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								   eps_tolerance()
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      eps = 4 * tools::epsilon<T>();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   eps_tolerance(unsigned bits)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								      eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   bool operator()(const T& a, const T& b)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								      return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								   T eps;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct equal_floor
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   equal_floor(){}
							 | 
						||
| 
								 | 
							
								   template <class T>
							 | 
						||
| 
								 | 
							
								   bool operator()(const T& a, const T& b)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								      return floor(a) == floor(b);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct equal_ceil
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   equal_ceil(){}
							 | 
						||
| 
								 | 
							
								   template <class T>
							 | 
						||
| 
								 | 
							
								   bool operator()(const T& a, const T& b)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								      return ceil(a) == ceil(b);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct equal_nearest_integer
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   equal_nearest_integer(){}
							 | 
						||
| 
								 | 
							
								   template <class T>
							 | 
						||
| 
								 | 
							
								   bool operator()(const T& a, const T& b)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								      return floor(a + 0.5f) == floor(b + 0.5f);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace detail{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T>
							 | 
						||
| 
								 | 
							
								void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Given a point c inside the existing enclosing interval
							 | 
						||
| 
								 | 
							
								   // [a, b] sets a = c if f(c) == 0, otherwise finds the new 
							 | 
						||
| 
								 | 
							
								   // enclosing interval: either [a, c] or [c, b] and sets
							 | 
						||
| 
								 | 
							
								   // d and fd to the point that has just been removed from
							 | 
						||
| 
								 | 
							
								   // the interval.  In other words d is the third best guess
							 | 
						||
| 
								 | 
							
								   // to the root.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // For ADL of std math functions
							 | 
						||
| 
								 | 
							
								   T tol = tools::epsilon<T>() * 2;
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // If the interval [a,b] is very small, or if c is too close 
							 | 
						||
| 
								 | 
							
								   // to one end of the interval then we need to adjust the
							 | 
						||
| 
								 | 
							
								   // location of c accordingly:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if((b - a) < 2 * tol * a)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      c = a + (b - a) / 2;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else if(c <= a + fabs(a) * tol)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      c = a + fabs(a) * tol;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else if(c >= b - fabs(b) * tol)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      c = b - fabs(b) * tol;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // OK, lets invoke f(c):
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   T fc = f(c);
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // if we have a zero then we have an exact solution to the root:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if(fc == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      a = c;
							 | 
						||
| 
								 | 
							
								      fa = 0;
							 | 
						||
| 
								 | 
							
								      d = 0;
							 | 
						||
| 
								 | 
							
								      fd = 0;
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Non-zero fc, update the interval:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      d = b;
							 | 
						||
| 
								 | 
							
								      fd = fb;
							 | 
						||
| 
								 | 
							
								      b = c;
							 | 
						||
| 
								 | 
							
								      fb = fc;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      d = a;
							 | 
						||
| 
								 | 
							
								      fd = fa;
							 | 
						||
| 
								 | 
							
								      a = c;
							 | 
						||
| 
								 | 
							
								      fa= fc;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline T safe_div(T num, T denom, T r)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // return num / denom without overflow,
							 | 
						||
| 
								 | 
							
								   // return r if overflow would occur.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // For ADL of std math functions
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(fabs(denom) < 1)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if(fabs(denom * tools::max_value<T>()) <= fabs(num))
							 | 
						||
| 
								 | 
							
								         return r;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return num / denom;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Performs standard secant interpolation of [a,b] given
							 | 
						||
| 
								 | 
							
								   // function evaluations f(a) and f(b).  Performs a bisection
							 | 
						||
| 
								 | 
							
								   // if secant interpolation would leave us very close to either
							 | 
						||
| 
								 | 
							
								   // a or b.  Rationale: we only call this function when at least
							 | 
						||
| 
								 | 
							
								   // one other form of interpolation has already failed, so we know
							 | 
						||
| 
								 | 
							
								   // that the function is unlikely to be smooth with a root very
							 | 
						||
| 
								 | 
							
								   // close to a or b.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // For ADL of std math functions
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   T tol = tools::epsilon<T>() * 5;
							 | 
						||
| 
								 | 
							
								   T c = a - (fa / (fb - fa)) * (b - a);
							 | 
						||
| 
								 | 
							
								   if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
							 | 
						||
| 
								 | 
							
								      return (a + b) / 2;
							 | 
						||
| 
								 | 
							
								   return c;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								T quadratic_interpolate(const T& a, const T& b, T const& d,
							 | 
						||
| 
								 | 
							
								                           const T& fa, const T& fb, T const& fd, 
							 | 
						||
| 
								 | 
							
								                           unsigned count)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Performs quadratic interpolation to determine the next point,
							 | 
						||
| 
								 | 
							
								   // takes count Newton steps to find the location of the
							 | 
						||
| 
								 | 
							
								   // quadratic polynomial.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Point d must lie outside of the interval [a,b], it is the third
							 | 
						||
| 
								 | 
							
								   // best approximation to the root, after a and b.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Note: this does not guarantee to find a root
							 | 
						||
| 
								 | 
							
								   // inside [a, b], so we fall back to a secant step should
							 | 
						||
| 
								 | 
							
								   // the result be out of range.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Start by obtaining the coefficients of the quadratic polynomial:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
							 | 
						||
| 
								 | 
							
								   T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
							 | 
						||
| 
								 | 
							
								   A = safe_div(T(A - B), T(d - a), T(0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(A == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      // failure to determine coefficients, try a secant step:
							 | 
						||
| 
								 | 
							
								      return secant_interpolate(a, b, fa, fb);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Determine the starting point of the Newton steps:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   T c;
							 | 
						||
| 
								 | 
							
								   if(boost::math::sign(A) * boost::math::sign(fa) > 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      c = a;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      c = b;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Take the Newton steps:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   for(unsigned i = 1; i <= count; ++i)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
							 | 
						||
| 
								 | 
							
								      c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if((c <= a) || (c >= b))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      // Oops, failure, try a secant step:
							 | 
						||
| 
								 | 
							
								      c = secant_interpolate(a, b, fa, fb);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return c;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								T cubic_interpolate(const T& a, const T& b, const T& d, 
							 | 
						||
| 
								 | 
							
								                    const T& e, const T& fa, const T& fb, 
							 | 
						||
| 
								 | 
							
								                    const T& fd, const T& fe)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Uses inverse cubic interpolation of f(x) at points 
							 | 
						||
| 
								 | 
							
								   // [a,b,d,e] to obtain an approximate root of f(x).
							 | 
						||
| 
								 | 
							
								   // Points d and e lie outside the interval [a,b]
							 | 
						||
| 
								 | 
							
								   // and are the third and forth best approximations
							 | 
						||
| 
								 | 
							
								   // to the root that we have found so far.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Note: this does not guarantee to find a root
							 | 
						||
| 
								 | 
							
								   // inside [a, b], so we fall back to quadratic
							 | 
						||
| 
								 | 
							
								   // interpolation in case of an erroneous result.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
							 | 
						||
| 
								 | 
							
								      << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb 
							 | 
						||
| 
								 | 
							
								      << " fd = " << fd << " fe = " << fe);
							 | 
						||
| 
								 | 
							
								   T q11 = (d - e) * fd / (fe - fd);
							 | 
						||
| 
								 | 
							
								   T q21 = (b - d) * fb / (fd - fb);
							 | 
						||
| 
								 | 
							
								   T q31 = (a - b) * fa / (fb - fa);
							 | 
						||
| 
								 | 
							
								   T d21 = (b - d) * fd / (fd - fb);
							 | 
						||
| 
								 | 
							
								   T d31 = (a - b) * fb / (fb - fa);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(
							 | 
						||
| 
								 | 
							
								      "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
							 | 
						||
| 
								 | 
							
								      << " d21 = " << d21 << " d31 = " << d31);
							 | 
						||
| 
								 | 
							
								   T q22 = (d21 - q11) * fb / (fe - fb);
							 | 
						||
| 
								 | 
							
								   T q32 = (d31 - q21) * fa / (fd - fa);
							 | 
						||
| 
								 | 
							
								   T d32 = (d31 - q21) * fd / (fd - fa);
							 | 
						||
| 
								 | 
							
								   T q33 = (d32 - q22) * fa / (fe - fa);
							 | 
						||
| 
								 | 
							
								   T c = q31 + q32 + q33 + a;
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(
							 | 
						||
| 
								 | 
							
								      "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
							 | 
						||
| 
								 | 
							
								      << " q33 = " << q33 << " c = " << c);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if((c <= a) || (c >= b))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      // Out of bounds step, fall back to quadratic interpolation:
							 | 
						||
| 
								 | 
							
								      c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(
							 | 
						||
| 
								 | 
							
								      "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   return c;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T, class Tol, class Policy>
							 | 
						||
| 
								 | 
							
								std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Main entry point and logic for Toms Algorithm 748
							 | 
						||
| 
								 | 
							
								   // root finder.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // For ADL of std math functions
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::tools::toms748_solve<%1%>";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   boost::uintmax_t count = max_iter;
							 | 
						||
| 
								 | 
							
								   T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
							 | 
						||
| 
								 | 
							
								   static const T mu = 0.5f;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // initialise a, b and fa, fb:
							 | 
						||
| 
								 | 
							
								   a = ax;
							 | 
						||
| 
								 | 
							
								   b = bx;
							 | 
						||
| 
								 | 
							
								   if(a >= b)
							 | 
						||
| 
								 | 
							
								      return boost::math::detail::pair_from_single(policies::raise_domain_error(
							 | 
						||
| 
								 | 
							
								         function, 
							 | 
						||
| 
								 | 
							
								         "Parameters a and b out of order: a=%1%", a, pol));
							 | 
						||
| 
								 | 
							
								   fa = fax;
							 | 
						||
| 
								 | 
							
								   fb = fbx;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(tol(a, b) || (fa == 0) || (fb == 0))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      max_iter = 0;
							 | 
						||
| 
								 | 
							
								      if(fa == 0)
							 | 
						||
| 
								 | 
							
								         b = a;
							 | 
						||
| 
								 | 
							
								      else if(fb == 0)
							 | 
						||
| 
								 | 
							
								         a = b;
							 | 
						||
| 
								 | 
							
								      return std::make_pair(a, b);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
							 | 
						||
| 
								 | 
							
								      return boost::math::detail::pair_from_single(policies::raise_domain_error(
							 | 
						||
| 
								 | 
							
								         function, 
							 | 
						||
| 
								 | 
							
								         "Parameters a and b do not bracket the root: a=%1%", a, pol));
							 | 
						||
| 
								 | 
							
								   // dummy value for fd, e and fe:
							 | 
						||
| 
								 | 
							
								   fe = e = fd = 1e5F;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(fa != 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // On the first step we take a secant step:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      c = detail::secant_interpolate(a, b, fa, fb);
							 | 
						||
| 
								 | 
							
								      detail::bracket(f, a, b, c, fa, fb, d, fd);
							 | 
						||
| 
								 | 
							
								      --count;
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      if(count && (fa != 0) && !tol(a, b))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // On the second step we take a quadratic interpolation:
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
							 | 
						||
| 
								 | 
							
								         e = d;
							 | 
						||
| 
								 | 
							
								         fe = fd;
							 | 
						||
| 
								 | 
							
								         detail::bracket(f, a, b, c, fa, fb, d, fd);
							 | 
						||
| 
								 | 
							
								         --count;
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   while(count && (fa != 0) && !tol(a, b))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      // save our brackets:
							 | 
						||
| 
								 | 
							
								      a0 = a;
							 | 
						||
| 
								 | 
							
								      b0 = b;
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Starting with the third step taken
							 | 
						||
| 
								 | 
							
								      // we can use either quadratic or cubic interpolation.
							 | 
						||
| 
								 | 
							
								      // Cubic interpolation requires that all four function values
							 | 
						||
| 
								 | 
							
								      // fa, fb, fd, and fe are distinct, should that not be the case
							 | 
						||
| 
								 | 
							
								      // then variable prof will get set to true, and we'll end up
							 | 
						||
| 
								 | 
							
								      // taking a quadratic step instead.
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      T min_diff = tools::min_value<T>() * 32;
							 | 
						||
| 
								 | 
							
								      bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
							 | 
						||
| 
								 | 
							
								      if(prof)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // re-bracket, and check for termination:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      e = d;
							 | 
						||
| 
								 | 
							
								      fe = fd;
							 | 
						||
| 
								 | 
							
								      detail::bracket(f, a, b, c, fa, fb, d, fd);
							 | 
						||
| 
								 | 
							
								      if((0 == --count) || (fa == 0) || tol(a, b))
							 | 
						||
| 
								 | 
							
								         break;
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Now another interpolated step:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
							 | 
						||
| 
								 | 
							
								      if(prof)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Bracket again, and check termination condition, update e:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      detail::bracket(f, a, b, c, fa, fb, d, fd);
							 | 
						||
| 
								 | 
							
								      if((0 == --count) || (fa == 0) || tol(a, b))
							 | 
						||
| 
								 | 
							
								         break;
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Now we take a double-length secant step:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      if(fabs(fa) < fabs(fb))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         u = a;
							 | 
						||
| 
								 | 
							
								         fu = fa;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         u = b;
							 | 
						||
| 
								 | 
							
								         fu = fb;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      c = u - 2 * (fu / (fb - fa)) * (b - a);
							 | 
						||
| 
								 | 
							
								      if(fabs(c - u) > (b - a) / 2)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         c = a + (b - a) / 2;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Bracket again, and check termination condition:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      e = d;
							 | 
						||
| 
								 | 
							
								      fe = fd;
							 | 
						||
| 
								 | 
							
								      detail::bracket(f, a, b, c, fa, fb, d, fd);
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
							 | 
						||
| 
								 | 
							
								      if((0 == --count) || (fa == 0) || tol(a, b))
							 | 
						||
| 
								 | 
							
								         break;
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // And finally... check to see if an additional bisection step is 
							 | 
						||
| 
								 | 
							
								      // to be taken, we do this if we're not converging fast enough:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      if((b - a) < mu * (b0 - a0))
							 | 
						||
| 
								 | 
							
								         continue;
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // bracket again on a bisection:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      e = d;
							 | 
						||
| 
								 | 
							
								      fe = fd;
							 | 
						||
| 
								 | 
							
								      detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
							 | 
						||
| 
								 | 
							
								      --count;
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
							 | 
						||
| 
								 | 
							
								   } // while loop
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   max_iter -= count;
							 | 
						||
| 
								 | 
							
								   if(fa == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      b = a;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else if(fb == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      a = b;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_LOG_COUNT(max_iter)
							 | 
						||
| 
								 | 
							
								   return std::make_pair(a, b);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T, class Tol>
							 | 
						||
| 
								 | 
							
								inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T, class Tol, class Policy>
							 | 
						||
| 
								 | 
							
								inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   max_iter -= 2;
							 | 
						||
| 
								 | 
							
								   std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
							 | 
						||
| 
								 | 
							
								   max_iter += 2;
							 | 
						||
| 
								 | 
							
								   return r;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T, class Tol>
							 | 
						||
| 
								 | 
							
								inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T, class Tol, class Policy>
							 | 
						||
| 
								 | 
							
								std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Set up inital brackets:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   T a = guess;
							 | 
						||
| 
								 | 
							
								   T b = a;
							 | 
						||
| 
								 | 
							
								   T fa = f(a);
							 | 
						||
| 
								 | 
							
								   T fb = fa;
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Set up invocation count:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   boost::uintmax_t count = max_iter - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   int step = 32;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if((fa < 0) == (guess < 0 ? !rising : rising))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Zero is to the right of b, so walk upwards
							 | 
						||
| 
								 | 
							
								      // until we find it:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      while((boost::math::sign)(fb) == (boost::math::sign)(fa))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         if(count == 0)
							 | 
						||
| 
								 | 
							
								            return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol));
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Heuristic: normally it's best not to increase the step sizes as we'll just end up
							 | 
						||
| 
								 | 
							
								         // with a really wide range to search for the root.  However, if the initial guess was *really*
							 | 
						||
| 
								 | 
							
								         // bad then we need to speed up the search otherwise we'll take forever if we're orders of
							 | 
						||
| 
								 | 
							
								         // magnitude out.  This happens most often if the guess is a small value (say 1) and the result
							 | 
						||
| 
								 | 
							
								         // we're looking for is close to std::numeric_limits<T>::min().
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         if((max_iter - count) % step == 0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            factor *= 2;
							 | 
						||
| 
								 | 
							
								            if(step > 1) step /= 2;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Now go ahead and move our guess by "factor":
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         a = b;
							 | 
						||
| 
								 | 
							
								         fa = fb;
							 | 
						||
| 
								 | 
							
								         b *= factor;
							 | 
						||
| 
								 | 
							
								         fb = f(b);
							 | 
						||
| 
								 | 
							
								         --count;
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Zero is to the left of a, so walk downwards
							 | 
						||
| 
								 | 
							
								      // until we find it:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      while((boost::math::sign)(fb) == (boost::math::sign)(fa))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         if(fabs(a) < tools::min_value<T>())
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            // Escape route just in case the answer is zero!
							 | 
						||
| 
								 | 
							
								            max_iter -= count;
							 | 
						||
| 
								 | 
							
								            max_iter += 1;
							 | 
						||
| 
								 | 
							
								            return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); 
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         if(count == 0)
							 | 
						||
| 
								 | 
							
								            return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol));
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Heuristic: normally it's best not to increase the step sizes as we'll just end up
							 | 
						||
| 
								 | 
							
								         // with a really wide range to search for the root.  However, if the initial guess was *really*
							 | 
						||
| 
								 | 
							
								         // bad then we need to speed up the search otherwise we'll take forever if we're orders of
							 | 
						||
| 
								 | 
							
								         // magnitude out.  This happens most often if the guess is a small value (say 1) and the result
							 | 
						||
| 
								 | 
							
								         // we're looking for is close to std::numeric_limits<T>::min().
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         if((max_iter - count) % step == 0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            factor *= 2;
							 | 
						||
| 
								 | 
							
								            if(step > 1) step /= 2;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Now go ahead and move are guess by "factor":
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         b = a;
							 | 
						||
| 
								 | 
							
								         fb = fa;
							 | 
						||
| 
								 | 
							
								         a /= factor;
							 | 
						||
| 
								 | 
							
								         fa = f(a);
							 | 
						||
| 
								 | 
							
								         --count;
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   max_iter -= count;
							 | 
						||
| 
								 | 
							
								   max_iter += 1;
							 | 
						||
| 
								 | 
							
								   std::pair<T, T> r = toms748_solve(
							 | 
						||
| 
								 | 
							
								      f, 
							 | 
						||
| 
								 | 
							
								      (a < 0 ? b : a), 
							 | 
						||
| 
								 | 
							
								      (a < 0 ? a : b), 
							 | 
						||
| 
								 | 
							
								      (a < 0 ? fb : fa), 
							 | 
						||
| 
								 | 
							
								      (a < 0 ? fa : fb), 
							 | 
						||
| 
								 | 
							
								      tol, 
							 | 
						||
| 
								 | 
							
								      count, 
							 | 
						||
| 
								 | 
							
								      pol);
							 | 
						||
| 
								 | 
							
								   max_iter += count;
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_LOG_COUNT(max_iter)
							 | 
						||
| 
								 | 
							
								   return r;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class F, class T, class Tol>
							 | 
						||
| 
								 | 
							
								inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace tools
							 | 
						||
| 
								 | 
							
								} // namespace math
							 | 
						||
| 
								 | 
							
								} // namespace boost
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
							 | 
						||
| 
								 | 
							
								
							 |