253 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			253 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  (C) Copyright John Maddock 2005.
							 | 
						||
| 
								 | 
							
								//  Distributed under the Boost Software License, Version 1.0. (See accompanying
							 | 
						||
| 
								 | 
							
								//  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_COMPLEX_ASIN_INCLUDED
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
							 | 
						||
| 
								 | 
							
								#  include <boost/math/complex/details.hpp>
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_LOG1P_INCLUDED
							 | 
						||
| 
								 | 
							
								#  include <boost/math/special_functions/log1p.hpp>
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#include <boost/assert.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_NO_STDC_NAMESPACE
							 | 
						||
| 
								 | 
							
								namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost{ namespace math{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template<class T> 
							 | 
						||
| 
								 | 
							
								inline std::complex<T> asin(const std::complex<T>& z)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // This implementation is a transcription of the pseudo-code in:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // "Implementing the complex Arcsine and Arccosine Functions using Exception Handling."
							 | 
						||
| 
								 | 
							
								   // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
							 | 
						||
| 
								 | 
							
								   // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // These static constants should really be in a maths constants library,
							 | 
						||
| 
								 | 
							
								   // note that we have tweaked the value of a_crossover as per https://svn.boost.org/trac/boost/ticket/7290:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   static const T one = static_cast<T>(1);
							 | 
						||
| 
								 | 
							
								   //static const T two = static_cast<T>(2);
							 | 
						||
| 
								 | 
							
								   static const T half = static_cast<T>(0.5L);
							 | 
						||
| 
								 | 
							
								   static const T a_crossover = static_cast<T>(10);
							 | 
						||
| 
								 | 
							
								   static const T b_crossover = static_cast<T>(0.6417L);
							 | 
						||
| 
								 | 
							
								   static const T s_pi = boost::math::constants::pi<T>();
							 | 
						||
| 
								 | 
							
								   static const T half_pi = s_pi / 2;
							 | 
						||
| 
								 | 
							
								   static const T log_two = boost::math::constants::ln_two<T>();
							 | 
						||
| 
								 | 
							
								   static const T quarter_pi = s_pi / 4;
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MSVC
							 | 
						||
| 
								 | 
							
								#pragma warning(push)
							 | 
						||
| 
								 | 
							
								#pragma warning(disable:4127)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Get real and imaginary parts, discard the signs as we can 
							 | 
						||
| 
								 | 
							
								   // figure out the sign of the result later:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   T x = std::fabs(z.real());
							 | 
						||
| 
								 | 
							
								   T y = std::fabs(z.imag());
							 | 
						||
| 
								 | 
							
								   T real, imag;  // our results
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Begin by handling the special cases for infinities and nan's
							 | 
						||
| 
								 | 
							
								   // specified in C99, most of this is handled by the regular logic
							 | 
						||
| 
								 | 
							
								   // below, but handling it as a special case prevents overflow/underflow
							 | 
						||
| 
								 | 
							
								   // arithmetic which may trip up some machines:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if((boost::math::isnan)(x))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if((boost::math::isnan)(y))
							 | 
						||
| 
								 | 
							
								         return std::complex<T>(x, x);
							 | 
						||
| 
								 | 
							
								      if((boost::math::isinf)(y))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         real = x;
							 | 
						||
| 
								 | 
							
								         imag = std::numeric_limits<T>::infinity();
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         return std::complex<T>(x, x);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else if((boost::math::isnan)(y))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if(x == 0)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         real = 0;
							 | 
						||
| 
								 | 
							
								         imag = y;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else if((boost::math::isinf)(x))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         real = y;
							 | 
						||
| 
								 | 
							
								         imag = std::numeric_limits<T>::infinity();
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         return std::complex<T>(y, y);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else if((boost::math::isinf)(x))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if((boost::math::isinf)(y))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         real = quarter_pi;
							 | 
						||
| 
								 | 
							
								         imag = std::numeric_limits<T>::infinity();
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         real = half_pi;
							 | 
						||
| 
								 | 
							
								         imag = std::numeric_limits<T>::infinity();
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else if((boost::math::isinf)(y))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      real = 0;
							 | 
						||
| 
								 | 
							
								      imag = std::numeric_limits<T>::infinity();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // special case for real numbers:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      if((y == 0) && (x <= one))
							 | 
						||
| 
								 | 
							
								         return std::complex<T>(std::asin(z.real()), z.imag());
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Figure out if our input is within the "safe area" identified by Hull et al.
							 | 
						||
| 
								 | 
							
								      // This would be more efficient with portable floating point exception handling;
							 | 
						||
| 
								 | 
							
								      // fortunately the quantities M and u identified by Hull et al (figure 3), 
							 | 
						||
| 
								 | 
							
								      // match with the max and min methods of numeric_limits<T>.
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      T safe_max = detail::safe_max(static_cast<T>(8));
							 | 
						||
| 
								 | 
							
								      T safe_min = detail::safe_min(static_cast<T>(4));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      T xp1 = one + x;
							 | 
						||
| 
								 | 
							
								      T xm1 = x - one;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         T yy = y * y;
							 | 
						||
| 
								 | 
							
								         T r = std::sqrt(xp1*xp1 + yy);
							 | 
						||
| 
								 | 
							
								         T s = std::sqrt(xm1*xm1 + yy);
							 | 
						||
| 
								 | 
							
								         T a = half * (r + s);
							 | 
						||
| 
								 | 
							
								         T b = x / a;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         if(b <= b_crossover)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            real = std::asin(b);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            T apx = a + x;
							 | 
						||
| 
								 | 
							
								            if(x <= one)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1))));
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1)))));
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         if(a <= a_crossover)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            T am1;
							 | 
						||
| 
								 | 
							
								            if(x < one)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               am1 = half * (yy/(r + xp1) + yy/(s - xm1));
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               am1 = half * (yy/(r + xp1) + (s + xm1));
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            imag = std::log(a + std::sqrt(a*a - one));
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // This is the Hull et al exception handling code from Fig 3 of their paper:
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            if(x < one)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               real = std::asin(x);
							 | 
						||
| 
								 | 
							
								               imag = y / std::sqrt(-xp1*xm1);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               real = half_pi;
							 | 
						||
| 
								 | 
							
								               if(((std::numeric_limits<T>::max)() / xp1) > xm1)
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  // xp1 * xm1 won't overflow:
							 | 
						||
| 
								 | 
							
								                  imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               else
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  imag = log_two + std::log(x);
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if(y <= safe_min)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            // There is an assumption in Hull et al's analysis that
							 | 
						||
| 
								 | 
							
								            // if we get here then x == 1.  This is true for all "good"
							 | 
						||
| 
								 | 
							
								            // machines where :
							 | 
						||
| 
								 | 
							
								            // 
							 | 
						||
| 
								 | 
							
								            // E^2 > 8*sqrt(u); with:
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // E =  std::numeric_limits<T>::epsilon()
							 | 
						||
| 
								 | 
							
								            // u = (std::numeric_limits<T>::min)()
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // Hull et al provide alternative code for "bad" machines
							 | 
						||
| 
								 | 
							
								            // but we have no way to test that here, so for now just assert
							 | 
						||
| 
								 | 
							
								            // on the assumption:
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            BOOST_ASSERT(x == 1);
							 | 
						||
| 
								 | 
							
								            real = half_pi - std::sqrt(y);
							 | 
						||
| 
								 | 
							
								            imag = std::sqrt(y);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if(std::numeric_limits<T>::epsilon() * y - one >= x)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            real = x/y; // This can underflow!
							 | 
						||
| 
								 | 
							
								            imag = log_two + std::log(y);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if(x > one)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            real = std::atan(x/y);
							 | 
						||
| 
								 | 
							
								            T xoy = x/y;
							 | 
						||
| 
								 | 
							
								            imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            T a = std::sqrt(one + y*y);
							 | 
						||
| 
								 | 
							
								            real = x/a; // This can underflow!
							 | 
						||
| 
								 | 
							
								            imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Finish off by working out the sign of the result:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if((boost::math::signbit)(z.real()))
							 | 
						||
| 
								 | 
							
								      real = (boost::math::changesign)(real);
							 | 
						||
| 
								 | 
							
								   if((boost::math::signbit)(z.imag()))
							 | 
						||
| 
								 | 
							
								      imag = (boost::math::changesign)(imag);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   return std::complex<T>(real, imag);
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MSVC
							 | 
						||
| 
								 | 
							
								#pragma warning(pop)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} } // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED
							 |