75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  Copyright (c) 2015 John Maddock
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_ELLINT_JZ_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_ELLINT_JZ_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/math_fwd.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/ellint_1.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/ellint_rj.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/constants/constants.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/policies/error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/workaround.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Elliptic integral the Jacobi Zeta function.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost { namespace math { 
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								namespace detail{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Elliptic integral - Jacobi Zeta
							 | 
						||
| 
								 | 
							
								template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								T jacobi_zeta_imp(T phi, T k, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								    using namespace boost::math::tools;
							 | 
						||
| 
								 | 
							
								    using namespace boost::math::constants;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    bool invert = false;
							 | 
						||
| 
								 | 
							
								    if(phi < 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								       phi = fabs(phi);
							 | 
						||
| 
								 | 
							
								       invert = true;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    T result;
							 | 
						||
| 
								 | 
							
								    T sinp = sin(phi);
							 | 
						||
| 
								 | 
							
								    T cosp = cos(phi);
							 | 
						||
| 
								 | 
							
								    T s2 = sinp * sinp;
							 | 
						||
| 
								 | 
							
								    T k2 = k * k;
							 | 
						||
| 
								 | 
							
								    T kp = 1 - k2;
							 | 
						||
| 
								 | 
							
								    if(k == 1)
							 | 
						||
| 
								 | 
							
								       result = sinp * (boost::math::sign)(cosp);  // We get here by simplifying JacobiZeta[w, 1] in Mathematica, and the fact that 0 <= phi.
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								       result = k2 * sinp * cosp * sqrt(1 - k2 * s2) * ellint_rj_imp(T(0), kp, T(1), T(1 - k2 * s2), pol) / (3 * ellint_k_imp(k, pol));
							 | 
						||
| 
								 | 
							
								    return invert ? T(-result) : result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T1, class T2, class Policy>
							 | 
						||
| 
								 | 
							
								inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   typedef typename tools::promote_args<T1, T2>::type result_type;
							 | 
						||
| 
								 | 
							
								   typedef typename policies::evaluation<result_type, Policy>::type value_type;
							 | 
						||
| 
								 | 
							
								   return policies::checked_narrowing_cast<result_type, Policy>(detail::jacobi_zeta_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::jacobi_zeta<%1%>(%1%,%1%)");
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T1, class T2>
							 | 
						||
| 
								 | 
							
								inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return boost::math::jacobi_zeta(k, phi, policies::policy<>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}} // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_ELLINT_D_HPP
							 | 
						||
| 
								 | 
							
								
							 |