246 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			246 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								// Copyright 2008 John Maddock
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								// Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt
							 | 
						||
| 
								 | 
							
								// or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_QUANTILE_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_QUANTILE_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/policies/error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/detail/hypergeometric_pdf.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost{ namespace math{ namespace detail{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_down>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if((p < cum * fudge_factor) && (x != lbound))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_VARIABLE(x-1);
							 | 
						||
| 
								 | 
							
								      return --x;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned /*lbound*/, unsigned ubound, const policies::discrete_quantile<policies::integer_round_up>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if((cum < p * fudge_factor) && (x != ubound))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_VARIABLE(x+1);
							 | 
						||
| 
								 | 
							
								      return ++x;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_inwards>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if(p >= 0.5)
							 | 
						||
| 
								 | 
							
								      return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
							 | 
						||
| 
								 | 
							
								   return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_outwards>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if(p >= 0.5)
							 | 
						||
| 
								 | 
							
								      return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
							 | 
						||
| 
								 | 
							
								   return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_p(unsigned x, T /*p*/, T /*cum*/, T /*fudge_factor*/, unsigned /*lbound*/, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_nearest>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_down>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if((q * fudge_factor > cum) && (x != lbound))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_VARIABLE(x-1);
							 | 
						||
| 
								 | 
							
								      return --x;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned /*lbound*/, unsigned ubound, const policies::discrete_quantile<policies::integer_round_up>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if((q < cum * fudge_factor) && (x != ubound))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_INSTRUMENT_VARIABLE(x+1);
							 | 
						||
| 
								 | 
							
								      return ++x;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_inwards>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if(q < 0.5)
							 | 
						||
| 
								 | 
							
								      return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
							 | 
						||
| 
								 | 
							
								   return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_outwards>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   if(q >= 0.5)
							 | 
						||
| 
								 | 
							
								      return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
							 | 
						||
| 
								 | 
							
								   return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline unsigned round_x_from_q(unsigned x, T /*q*/, T /*cum*/, T /*fudge_factor*/, unsigned /*lbound*/, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_nearest>&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return x;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class Policy>
							 | 
						||
| 
								 | 
							
								unsigned hypergeometric_quantile_imp(T p, T q, unsigned r, unsigned n, unsigned N, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MSVC
							 | 
						||
| 
								 | 
							
								#  pragma warning(push)
							 | 
						||
| 
								 | 
							
								#  pragma warning(disable:4267)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								   typedef typename Policy::discrete_quantile_type discrete_quantile_type;
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   BOOST_FPU_EXCEPTION_GUARD
							 | 
						||
| 
								 | 
							
								   T result;
							 | 
						||
| 
								 | 
							
								   T fudge_factor = 1 + tools::epsilon<T>() * ((N <= boost::math::prime(boost::math::max_prime - 1)) ? 50 : 2 * N);
							 | 
						||
| 
								 | 
							
								   unsigned base = static_cast<unsigned>((std::max)(0, (int)(n + r) - (int)(N)));
							 | 
						||
| 
								 | 
							
								   unsigned lim = (std::min)(r, n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(p);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(q);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(r);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(n);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(N);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(fudge_factor);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(base);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(lim);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(p <= 0.5)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      unsigned x = base;
							 | 
						||
| 
								 | 
							
								      result = hypergeometric_pdf<T>(x, r, n, N, pol);
							 | 
						||
| 
								 | 
							
								      T diff = result;
							 | 
						||
| 
								 | 
							
								      if (diff == 0)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         ++x;
							 | 
						||
| 
								 | 
							
								         // We want to skip through x values as fast as we can until we start getting non-zero values,
							 | 
						||
| 
								 | 
							
								         // otherwise we're just making lots of expensive PDF calls:
							 | 
						||
| 
								 | 
							
								         T log_pdf = boost::math::lgamma(static_cast<T>(n + 1), pol)
							 | 
						||
| 
								 | 
							
								            + boost::math::lgamma(static_cast<T>(r + 1), pol)
							 | 
						||
| 
								 | 
							
								            + boost::math::lgamma(static_cast<T>(N - n + 1), pol)
							 | 
						||
| 
								 | 
							
								            + boost::math::lgamma(static_cast<T>(N - r + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(N + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(x + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(n - x + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(r - x + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(N - n - r + x + 1), pol);
							 | 
						||
| 
								 | 
							
								         while (log_pdf < tools::log_min_value<T>())
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            log_pdf += -log(static_cast<T>(x + 1)) + log(static_cast<T>(n - x)) + log(static_cast<T>(r - x)) - log(static_cast<T>(N - n - r + x + 1));
							 | 
						||
| 
								 | 
							
								            ++x;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         // By the time we get here, log_pdf may be fairly inaccurate due to
							 | 
						||
| 
								 | 
							
								         // roundoff errors, get a fresh PDF calculation before proceding:
							 | 
						||
| 
								 | 
							
								         diff = hypergeometric_pdf<T>(x, r, n, N, pol);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      while(result < p)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         diff = (diff > tools::min_value<T>() * 8) 
							 | 
						||
| 
								 | 
							
								            ? T(n - x) * T(r - x) * diff / (T(x + 1) * T(N + x + 1 - n - r))
							 | 
						||
| 
								 | 
							
								            : hypergeometric_pdf<T>(x + 1, r, n, N, pol);
							 | 
						||
| 
								 | 
							
								         if(result + diff / 2 > p)
							 | 
						||
| 
								 | 
							
								            break;
							 | 
						||
| 
								 | 
							
								         ++x;
							 | 
						||
| 
								 | 
							
								         result += diff;
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MATH_INSTRUMENT
							 | 
						||
| 
								 | 
							
								         if(diff != 0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(x);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(diff);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(result);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      return round_x_from_p(x, p, result, fudge_factor, base, lim, discrete_quantile_type());
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      unsigned x = lim;
							 | 
						||
| 
								 | 
							
								      result = 0;
							 | 
						||
| 
								 | 
							
								      T diff = hypergeometric_pdf<T>(x, r, n, N, pol);
							 | 
						||
| 
								 | 
							
								      if (diff == 0)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         // We want to skip through x values as fast as we can until we start getting non-zero values,
							 | 
						||
| 
								 | 
							
								         // otherwise we're just making lots of expensive PDF calls:
							 | 
						||
| 
								 | 
							
								         --x;
							 | 
						||
| 
								 | 
							
								         T log_pdf = boost::math::lgamma(static_cast<T>(n + 1), pol)
							 | 
						||
| 
								 | 
							
								            + boost::math::lgamma(static_cast<T>(r + 1), pol)
							 | 
						||
| 
								 | 
							
								            + boost::math::lgamma(static_cast<T>(N - n + 1), pol)
							 | 
						||
| 
								 | 
							
								            + boost::math::lgamma(static_cast<T>(N - r + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(N + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(x + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(n - x + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(r - x + 1), pol)
							 | 
						||
| 
								 | 
							
								            - boost::math::lgamma(static_cast<T>(N - n - r + x + 1), pol);
							 | 
						||
| 
								 | 
							
								         while (log_pdf < tools::log_min_value<T>())
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            log_pdf += log(static_cast<T>(x)) - log(static_cast<T>(n - x + 1)) - log(static_cast<T>(r - x + 1)) + log(static_cast<T>(N - n - r + x));
							 | 
						||
| 
								 | 
							
								            --x;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         // By the time we get here, log_pdf may be fairly inaccurate due to
							 | 
						||
| 
								 | 
							
								         // roundoff errors, get a fresh PDF calculation before proceding:
							 | 
						||
| 
								 | 
							
								         diff = hypergeometric_pdf<T>(x, r, n, N, pol);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      while(result + diff / 2 < q)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         result += diff;
							 | 
						||
| 
								 | 
							
								         diff = (diff > tools::min_value<T>() * 8)
							 | 
						||
| 
								 | 
							
								            ? x * T(N + x - n - r) * diff / (T(1 + n - x) * T(1 + r - x))
							 | 
						||
| 
								 | 
							
								            : hypergeometric_pdf<T>(x - 1, r, n, N, pol);
							 | 
						||
| 
								 | 
							
								         --x;
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MATH_INSTRUMENT
							 | 
						||
| 
								 | 
							
								         if(diff != 0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(x);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(diff);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(result);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      return round_x_from_q(x, q, result, fudge_factor, base, lim, discrete_quantile_type());
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_MSVC
							 | 
						||
| 
								 | 
							
								#  pragma warning(pop)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class Policy>
							 | 
						||
| 
								 | 
							
								inline unsigned hypergeometric_quantile(T p, T q, unsigned r, unsigned n, unsigned N, const Policy&)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_FPU_EXCEPTION_GUARD
							 | 
						||
| 
								 | 
							
								   typedef typename tools::promote_args<T>::type result_type;
							 | 
						||
| 
								 | 
							
								   typedef typename policies::evaluation<result_type, Policy>::type value_type;
							 | 
						||
| 
								 | 
							
								   typedef typename policies::normalise<
							 | 
						||
| 
								 | 
							
								      Policy, 
							 | 
						||
| 
								 | 
							
								      policies::promote_float<false>, 
							 | 
						||
| 
								 | 
							
								      policies::promote_double<false>, 
							 | 
						||
| 
								 | 
							
								      policies::assert_undefined<> >::type forwarding_policy;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   return detail::hypergeometric_quantile_imp<value_type>(p, q, r, n, N, forwarding_policy());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}}} // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 |