590 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			590 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  Copyright (c) 2006 Xiaogang Zhang
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_BESSEL_JY_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_BESSEL_JY_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/config.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/gamma.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/sign.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/hypot.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/sin_pi.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/cos_pi.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_jy_series.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/constants/constants.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/policies/error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/mpl/if.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/type_traits/is_floating_point.hpp>
							 | 
						||
| 
								 | 
							
								#include <complex>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Bessel functions of the first and second kind of fractional order
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost { namespace math {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   namespace detail {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Simultaneous calculation of A&S 9.2.9 and 9.2.10
							 | 
						||
| 
								 | 
							
								      // for use in A&S 9.2.5 and 9.2.6.
							 | 
						||
| 
								 | 
							
								      // This series is quick to evaluate, but divergent unless
							 | 
						||
| 
								 | 
							
								      // x is very large, in fact it's pretty hard to figure out
							 | 
						||
| 
								 | 
							
								      // with any degree of precision when this series actually 
							 | 
						||
| 
								 | 
							
								      // *will* converge!!  Consequently, we may just have to
							 | 
						||
| 
								 | 
							
								      // try it and see...
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      template <class T, class Policy>
							 | 
						||
| 
								 | 
							
								      bool hankel_PQ(T v, T x, T* p, T* q, const Policy& )
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								            T tolerance = 2 * policies::get_epsilon<T, Policy>();
							 | 
						||
| 
								 | 
							
								         *p = 1;
							 | 
						||
| 
								 | 
							
								         *q = 0;
							 | 
						||
| 
								 | 
							
								         T k = 1;
							 | 
						||
| 
								 | 
							
								         T z8 = 8 * x;
							 | 
						||
| 
								 | 
							
								         T sq = 1;
							 | 
						||
| 
								 | 
							
								         T mu = 4 * v * v;
							 | 
						||
| 
								 | 
							
								         T term = 1;
							 | 
						||
| 
								 | 
							
								         bool ok = true;
							 | 
						||
| 
								 | 
							
								         do
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            term *= (mu - sq * sq) / (k * z8);
							 | 
						||
| 
								 | 
							
								            *q += term;
							 | 
						||
| 
								 | 
							
								            k += 1;
							 | 
						||
| 
								 | 
							
								            sq += 2;
							 | 
						||
| 
								 | 
							
								            T mult = (sq * sq - mu) / (k * z8);
							 | 
						||
| 
								 | 
							
								            ok = fabs(mult) < 0.5f;
							 | 
						||
| 
								 | 
							
								            term *= mult;
							 | 
						||
| 
								 | 
							
								            *p += term;
							 | 
						||
| 
								 | 
							
								            k += 1;
							 | 
						||
| 
								 | 
							
								            sq += 2;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         while((fabs(term) > tolerance * *p) && ok);
							 | 
						||
| 
								 | 
							
								         return ok;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see
							 | 
						||
| 
								 | 
							
								      // Temme, Journal of Computational Physics, vol 21, 343 (1976)
							 | 
						||
| 
								 | 
							
								      template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								      int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         T g, h, p, q, f, coef, sum, sum1, tolerance;
							 | 
						||
| 
								 | 
							
								         T a, d, e, sigma;
							 | 
						||
| 
								 | 
							
								         unsigned long k;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								            using namespace boost::math::tools;
							 | 
						||
| 
								 | 
							
								         using namespace boost::math::constants;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         BOOST_ASSERT(fabs(v) <= 0.5f);  // precondition for using this routine
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         T gp = boost::math::tgamma1pm1(v, pol);
							 | 
						||
| 
								 | 
							
								         T gm = boost::math::tgamma1pm1(-v, pol);
							 | 
						||
| 
								 | 
							
								         T spv = boost::math::sin_pi(v, pol);
							 | 
						||
| 
								 | 
							
								         T spv2 = boost::math::sin_pi(v/2, pol);
							 | 
						||
| 
								 | 
							
								         T xp = pow(x/2, v);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         a = log(x / 2);
							 | 
						||
| 
								 | 
							
								         sigma = -a * v;
							 | 
						||
| 
								 | 
							
								         d = abs(sigma) < tools::epsilon<T>() ?
							 | 
						||
| 
								 | 
							
								            T(1) : sinh(sigma) / sigma;
							 | 
						||
| 
								 | 
							
								         e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2)
							 | 
						||
| 
								 | 
							
								            : T(2 * spv2 * spv2 / v);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v));
							 | 
						||
| 
								 | 
							
								         T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2);
							 | 
						||
| 
								 | 
							
								         T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv);
							 | 
						||
| 
								 | 
							
								         f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         p = vspv / (xp * (1 + gm));
							 | 
						||
| 
								 | 
							
								         q = vspv * xp / (1 + gp);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         g = f + e * q;
							 | 
						||
| 
								 | 
							
								         h = p;
							 | 
						||
| 
								 | 
							
								         coef = 1;
							 | 
						||
| 
								 | 
							
								         sum = coef * g;
							 | 
						||
| 
								 | 
							
								         sum1 = coef * h;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         T v2 = v * v;
							 | 
						||
| 
								 | 
							
								         T coef_mult = -x * x / 4;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         // series summation
							 | 
						||
| 
								 | 
							
								         tolerance = policies::get_epsilon<T, Policy>();
							 | 
						||
| 
								 | 
							
								         for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            f = (k * f + p + q) / (k*k - v2);
							 | 
						||
| 
								 | 
							
								            p /= k - v;
							 | 
						||
| 
								 | 
							
								            q /= k + v;
							 | 
						||
| 
								 | 
							
								            g = f + e * q;
							 | 
						||
| 
								 | 
							
								            h = p - k * g;
							 | 
						||
| 
								 | 
							
								            coef *= coef_mult / k;
							 | 
						||
| 
								 | 
							
								            sum += coef * g;
							 | 
						||
| 
								 | 
							
								            sum1 += coef * h;
							 | 
						||
| 
								 | 
							
								            if (abs(coef * g) < abs(sum) * tolerance) 
							 | 
						||
| 
								 | 
							
								            { 
							 | 
						||
| 
								 | 
							
								               break; 
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol);
							 | 
						||
| 
								 | 
							
								         *Y = -sum;
							 | 
						||
| 
								 | 
							
								         *Y1 = -2 * sum1 / x;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         return 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Evaluate continued fraction fv = J_(v+1) / J_v, see
							 | 
						||
| 
								 | 
							
								      // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73
							 | 
						||
| 
								 | 
							
								      template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								      int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         T C, D, f, a, b, delta, tiny, tolerance;
							 | 
						||
| 
								 | 
							
								         unsigned long k;
							 | 
						||
| 
								 | 
							
								         int s = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // |x| <= |v|, CF1_jy converges rapidly
							 | 
						||
| 
								 | 
							
								            // |x| > |v|, CF1_jy needs O(|x|) iterations to converge
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            // modified Lentz's method, see
							 | 
						||
| 
								 | 
							
								            // Lentz, Applied Optics, vol 15, 668 (1976)
							 | 
						||
| 
								 | 
							
								            tolerance = 2 * policies::get_epsilon<T, Policy>();;
							 | 
						||
| 
								 | 
							
								         tiny = sqrt(tools::min_value<T>());
							 | 
						||
| 
								 | 
							
								         C = f = tiny;                           // b0 = 0, replace with tiny
							 | 
						||
| 
								 | 
							
								         D = 0;
							 | 
						||
| 
								 | 
							
								         for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            a = -1;
							 | 
						||
| 
								 | 
							
								            b = 2 * (v + k) / x;
							 | 
						||
| 
								 | 
							
								            C = b + a / C;
							 | 
						||
| 
								 | 
							
								            D = b + a * D;
							 | 
						||
| 
								 | 
							
								            if (C == 0) { C = tiny; }
							 | 
						||
| 
								 | 
							
								            if (D == 0) { D = tiny; }
							 | 
						||
| 
								 | 
							
								            D = 1 / D;
							 | 
						||
| 
								 | 
							
								            delta = C * D;
							 | 
						||
| 
								 | 
							
								            f *= delta;
							 | 
						||
| 
								 | 
							
								            if (D < 0) { s = -s; }
							 | 
						||
| 
								 | 
							
								            if (abs(delta - 1) < tolerance) 
							 | 
						||
| 
								 | 
							
								            { break; }
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol);
							 | 
						||
| 
								 | 
							
								         *fv = -f;
							 | 
						||
| 
								 | 
							
								         *sign = s;                              // sign of denominator
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         return 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // This algorithm was originally written by Xiaogang Zhang
							 | 
						||
| 
								 | 
							
								      // using std::complex to perform the complex arithmetic.
							 | 
						||
| 
								 | 
							
								      // However, that turns out to 10x or more slower than using
							 | 
						||
| 
								 | 
							
								      // all real-valued arithmetic, so it's been rewritten using
							 | 
						||
| 
								 | 
							
								      // real values only.
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								      int CF2_jy(T v, T x, T* p, T* q, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp;
							 | 
						||
| 
								 | 
							
								         T tiny;
							 | 
						||
| 
								 | 
							
								         unsigned long k;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         // |x| >= |v|, CF2_jy converges rapidly
							 | 
						||
| 
								 | 
							
								         // |x| -> 0, CF2_jy fails to converge
							 | 
						||
| 
								 | 
							
								         BOOST_ASSERT(fabs(x) > 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         // modified Lentz's method, complex numbers involved, see
							 | 
						||
| 
								 | 
							
								         // Lentz, Applied Optics, vol 15, 668 (1976)
							 | 
						||
| 
								 | 
							
								         T tolerance = 2 * policies::get_epsilon<T, Policy>();
							 | 
						||
| 
								 | 
							
								         tiny = sqrt(tools::min_value<T>());
							 | 
						||
| 
								 | 
							
								         Cr = fr = -0.5f / x;
							 | 
						||
| 
								 | 
							
								         Ci = fi = 1;
							 | 
						||
| 
								 | 
							
								         //Dr = Di = 0;
							 | 
						||
| 
								 | 
							
								         T v2 = v * v;
							 | 
						||
| 
								 | 
							
								         a = (0.25f - v2) / x; // Note complex this one time only!
							 | 
						||
| 
								 | 
							
								         br = 2 * x;
							 | 
						||
| 
								 | 
							
								         bi = 2;
							 | 
						||
| 
								 | 
							
								         temp = Cr * Cr + 1;
							 | 
						||
| 
								 | 
							
								         Ci = bi + a * Cr / temp;
							 | 
						||
| 
								 | 
							
								         Cr = br + a / temp;
							 | 
						||
| 
								 | 
							
								         Dr = br;
							 | 
						||
| 
								 | 
							
								         Di = bi;
							 | 
						||
| 
								 | 
							
								         if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
							 | 
						||
| 
								 | 
							
								         if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
							 | 
						||
| 
								 | 
							
								         temp = Dr * Dr + Di * Di;
							 | 
						||
| 
								 | 
							
								         Dr = Dr / temp;
							 | 
						||
| 
								 | 
							
								         Di = -Di / temp;
							 | 
						||
| 
								 | 
							
								         delta_r = Cr * Dr - Ci * Di;
							 | 
						||
| 
								 | 
							
								         delta_i = Ci * Dr + Cr * Di;
							 | 
						||
| 
								 | 
							
								         temp = fr;
							 | 
						||
| 
								 | 
							
								         fr = temp * delta_r - fi * delta_i;
							 | 
						||
| 
								 | 
							
								         fi = temp * delta_i + fi * delta_r;
							 | 
						||
| 
								 | 
							
								         for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            a = k - 0.5f;
							 | 
						||
| 
								 | 
							
								            a *= a;
							 | 
						||
| 
								 | 
							
								            a -= v2;
							 | 
						||
| 
								 | 
							
								            bi += 2;
							 | 
						||
| 
								 | 
							
								            temp = Cr * Cr + Ci * Ci;
							 | 
						||
| 
								 | 
							
								            Cr = br + a * Cr / temp;
							 | 
						||
| 
								 | 
							
								            Ci = bi - a * Ci / temp;
							 | 
						||
| 
								 | 
							
								            Dr = br + a * Dr;
							 | 
						||
| 
								 | 
							
								            Di = bi + a * Di;
							 | 
						||
| 
								 | 
							
								            if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
							 | 
						||
| 
								 | 
							
								            if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
							 | 
						||
| 
								 | 
							
								            temp = Dr * Dr + Di * Di;
							 | 
						||
| 
								 | 
							
								            Dr = Dr / temp;
							 | 
						||
| 
								 | 
							
								            Di = -Di / temp;
							 | 
						||
| 
								 | 
							
								            delta_r = Cr * Dr - Ci * Di;
							 | 
						||
| 
								 | 
							
								            delta_i = Ci * Dr + Cr * Di;
							 | 
						||
| 
								 | 
							
								            temp = fr;
							 | 
						||
| 
								 | 
							
								            fr = temp * delta_r - fi * delta_i;
							 | 
						||
| 
								 | 
							
								            fi = temp * delta_i + fi * delta_r;
							 | 
						||
| 
								 | 
							
								            if (fabs(delta_r - 1) + fabs(delta_i) < tolerance)
							 | 
						||
| 
								 | 
							
								               break;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol);
							 | 
						||
| 
								 | 
							
								         *p = fr;
							 | 
						||
| 
								 | 
							
								         *q = fi;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         return 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      static const int need_j = 1;
							 | 
						||
| 
								 | 
							
								      static const int need_y = 2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
							 | 
						||
| 
								 | 
							
								      // Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
							 | 
						||
| 
								 | 
							
								      template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								      int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         BOOST_ASSERT(x >= 0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu;
							 | 
						||
| 
								 | 
							
								         T W, p, q, gamma, current, prev, next;
							 | 
						||
| 
								 | 
							
								         bool reflect = false;
							 | 
						||
| 
								 | 
							
								         unsigned n, k;
							 | 
						||
| 
								 | 
							
								         int s;
							 | 
						||
| 
								 | 
							
								         int org_kind = kind;
							 | 
						||
| 
								 | 
							
								         T cp = 0;
							 | 
						||
| 
								 | 
							
								         T sp = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								            using namespace boost::math::tools;
							 | 
						||
| 
								 | 
							
								         using namespace boost::math::constants;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         if (v < 0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            reflect = true;
							 | 
						||
| 
								 | 
							
								            v = -v;                             // v is non-negative from here
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         if (v > static_cast<T>((std::numeric_limits<int>::max)()))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%", v, pol);
							 | 
						||
| 
								 | 
							
								            return 1;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         n = iround(v, pol);
							 | 
						||
| 
								 | 
							
								         u = v - n;                              // -1/2 <= u < 1/2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         if(reflect)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            T z = (u + n % 2);
							 | 
						||
| 
								 | 
							
								            cp = boost::math::cos_pi(z, pol);
							 | 
						||
| 
								 | 
							
								            sp = boost::math::sin_pi(z, pol);
							 | 
						||
| 
								 | 
							
								            if(u != 0)
							 | 
						||
| 
								 | 
							
								               kind = need_j|need_y;               // need both for reflection formula
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         if(x == 0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            if(v == 0)
							 | 
						||
| 
								 | 
							
								               *J = 1;
							 | 
						||
| 
								 | 
							
								            else if((u == 0) || !reflect)
							 | 
						||
| 
								 | 
							
								               *J = 0;
							 | 
						||
| 
								 | 
							
								            else if(kind & need_j)
							 | 
						||
| 
								 | 
							
								               *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%", x, pol); // complex infinity
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               *J = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using J.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if((kind & need_y) == 0)
							 | 
						||
| 
								 | 
							
								               *Y = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using Y.
							 | 
						||
| 
								 | 
							
								            else if(v == 0)
							 | 
						||
| 
								 | 
							
								               *Y = -policies::raise_overflow_error<T>(function, 0, pol);
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%", x, pol); // complex infinity
							 | 
						||
| 
								 | 
							
								            return 1;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         // x is positive until reflection
							 | 
						||
| 
								 | 
							
								         W = T(2) / (x * pi<T>());               // Wronskian
							 | 
						||
| 
								 | 
							
								         T Yv_scale = 1;
							 | 
						||
| 
								 | 
							
								         if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5)))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // This series will actually converge rapidly for all small
							 | 
						||
| 
								 | 
							
								            // x - say up to x < 20 - but the first few terms are large
							 | 
						||
| 
								 | 
							
								            // and divergent which leads to large errors :-(
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            Jv = bessel_j_small_z_series(v, x, pol);
							 | 
						||
| 
								 | 
							
								            Yv = std::numeric_limits<T>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v)))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            // Evaluate using series representations.
							 | 
						||
| 
								 | 
							
								            // This is particularly important for x << v as in this
							 | 
						||
| 
								 | 
							
								            // area temme_jy may be slow to converge, if it converges at all.
							 | 
						||
| 
								 | 
							
								            // Requires x is not an integer.
							 | 
						||
| 
								 | 
							
								            if(kind&need_j)
							 | 
						||
| 
								 | 
							
								               Jv = bessel_j_small_z_series(v, x, pol);
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Jv = std::numeric_limits<T>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								            if((org_kind&need_y && (!reflect || (cp != 0))) 
							 | 
						||
| 
								 | 
							
								               || (org_kind & need_j && (reflect && (sp != 0))))
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               // Only calculate if we need it, and if the reflection formula will actually use it:
							 | 
						||
| 
								 | 
							
								               Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Yv = std::numeric_limits<T>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if((u == 0) && (x < policies::get_epsilon<T, Policy>()))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            // Truncated series evaluation for small x and v an integer,
							 | 
						||
| 
								 | 
							
								            // much quicker in this area than temme_jy below.
							 | 
						||
| 
								 | 
							
								            if(kind&need_j)
							 | 
						||
| 
								 | 
							
								               Jv = bessel_j_small_z_series(v, x, pol);
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Jv = std::numeric_limits<T>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								            if((org_kind&need_y && (!reflect || (cp != 0))) 
							 | 
						||
| 
								 | 
							
								               || (org_kind & need_j && (reflect && (sp != 0))))
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               // Only calculate if we need it, and if the reflection formula will actually use it:
							 | 
						||
| 
								 | 
							
								               Yv = bessel_yn_small_z(n, x, &Yv_scale, pol);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Yv = std::numeric_limits<T>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if(asymptotic_bessel_large_x_limit(v, x))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            if(kind&need_y)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               Yv = asymptotic_bessel_y_large_x_2(v, x);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
							 | 
						||
| 
								 | 
							
								            if(kind&need_j)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               Jv = asymptotic_bessel_j_large_x_2(v, x);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if((x > 8) && hankel_PQ(v, x, &p, &q, pol))
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // Hankel approximation: note that this method works best when x 
							 | 
						||
| 
								 | 
							
								            // is large, but in that case we end up calculating sines and cosines
							 | 
						||
| 
								 | 
							
								            // of large values, with horrendous resulting accuracy.  It is fast though
							 | 
						||
| 
								 | 
							
								            // when it works....
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // Normally we calculate sin/cos(chi) where:
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>();
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // But this introduces large errors, so use sin/cos addition formulae to
							 | 
						||
| 
								 | 
							
								            // improve accuracy:
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            T mod_v = fmod(T(v / 2 + 0.25f), T(2));
							 | 
						||
| 
								 | 
							
								            T sx = sin(x);
							 | 
						||
| 
								 | 
							
								            T cx = cos(x);
							 | 
						||
| 
								 | 
							
								            T sv = sin_pi(mod_v);
							 | 
						||
| 
								 | 
							
								            T cv = cos_pi(mod_v);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            T sc = sx * cv - sv * cx; // == sin(chi);
							 | 
						||
| 
								 | 
							
								            T cc = cx * cv + sx * sv; // == cos(chi);
							 | 
						||
| 
								 | 
							
								            T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x));
							 | 
						||
| 
								 | 
							
								            Yv = chi * (p * sc + q * cc);
							 | 
						||
| 
								 | 
							
								            Jv = chi * (p * cc - q * sc);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else if (x <= 2)                           // x in (0, 2]
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            if(temme_jy(u, x, &Yu, &Yu1, pol))             // Temme series
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               // domain error:
							 | 
						||
| 
								 | 
							
								               *J = *Y = Yu;
							 | 
						||
| 
								 | 
							
								               return 1;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            prev = Yu;
							 | 
						||
| 
								 | 
							
								            current = Yu1;
							 | 
						||
| 
								 | 
							
								            T scale = 1;
							 | 
						||
| 
								 | 
							
								            policies::check_series_iterations<T>(function, n, pol);
							 | 
						||
| 
								 | 
							
								            for (k = 1; k <= n; k++)            // forward recurrence for Y
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               T fact = 2 * (u + k) / x;
							 | 
						||
| 
								 | 
							
								               if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  scale /= current;
							 | 
						||
| 
								 | 
							
								                  prev /= current;
							 | 
						||
| 
								 | 
							
								                  current = 1;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               next = fact * current - prev;
							 | 
						||
| 
								 | 
							
								               prev = current;
							 | 
						||
| 
								 | 
							
								               current = next;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            Yv = prev;
							 | 
						||
| 
								 | 
							
								            Yv1 = current;
							 | 
						||
| 
								 | 
							
								            if(kind&need_j)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               CF1_jy(v, x, &fv, &s, pol);                 // continued fraction CF1_jy
							 | 
						||
| 
								 | 
							
								               Jv = scale * W / (Yv * fv - Yv1);           // Wronskian relation
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
							 | 
						||
| 
								 | 
							
								            Yv_scale = scale;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else                                    // x in (2, \infty)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            // Get Y(u, x):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            T ratio;
							 | 
						||
| 
								 | 
							
								            CF1_jy(v, x, &fv, &s, pol);
							 | 
						||
| 
								 | 
							
								            // tiny initial value to prevent overflow
							 | 
						||
| 
								 | 
							
								            T init = sqrt(tools::min_value<T>());
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(init);
							 | 
						||
| 
								 | 
							
								            prev = fv * s * init;
							 | 
						||
| 
								 | 
							
								            current = s * init;
							 | 
						||
| 
								 | 
							
								            if(v < max_factorial<T>::value)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               policies::check_series_iterations<T>(function, n, pol);
							 | 
						||
| 
								 | 
							
								               for (k = n; k > 0; k--)             // backward recurrence for J
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  next = 2 * (u + k) * current / x - prev;
							 | 
						||
| 
								 | 
							
								                  prev = current;
							 | 
						||
| 
								 | 
							
								                  current = next;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               ratio = (s * init) / current;     // scaling ratio
							 | 
						||
| 
								 | 
							
								               // can also call CF1_jy() to get fu, not much difference in precision
							 | 
						||
| 
								 | 
							
								               fu = prev / current;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               //
							 | 
						||
| 
								 | 
							
								               // When v is large we may get overflow in this calculation
							 | 
						||
| 
								 | 
							
								               // leading to NaN's and other nasty surprises:
							 | 
						||
| 
								 | 
							
								               //
							 | 
						||
| 
								 | 
							
								               policies::check_series_iterations<T>(function, n, pol);
							 | 
						||
| 
								 | 
							
								               bool over = false;
							 | 
						||
| 
								 | 
							
								               for (k = n; k > 0; k--)             // backward recurrence for J
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  T t = 2 * (u + k) / x;
							 | 
						||
| 
								 | 
							
								                  if((t > 1) && (tools::max_value<T>() / t < current))
							 | 
						||
| 
								 | 
							
								                  {
							 | 
						||
| 
								 | 
							
								                     over = true;
							 | 
						||
| 
								 | 
							
								                     break;
							 | 
						||
| 
								 | 
							
								                  }
							 | 
						||
| 
								 | 
							
								                  next = t * current - prev;
							 | 
						||
| 
								 | 
							
								                  prev = current;
							 | 
						||
| 
								 | 
							
								                  current = next;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               if(!over)
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  ratio = (s * init) / current;     // scaling ratio
							 | 
						||
| 
								 | 
							
								                  // can also call CF1_jy() to get fu, not much difference in precision
							 | 
						||
| 
								 | 
							
								                  fu = prev / current;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               else
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  ratio = 0;
							 | 
						||
| 
								 | 
							
								                  fu = 1;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            CF2_jy(u, x, &p, &q, pol);                  // continued fraction CF2_jy
							 | 
						||
| 
								 | 
							
								            T t = u / x - fu;                   // t = J'/J
							 | 
						||
| 
								 | 
							
								            gamma = (p - t) / q;
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // We can't allow gamma to cancel out to zero competely as it messes up
							 | 
						||
| 
								 | 
							
								            // the subsequent logic.  So pretend that one bit didn't cancel out
							 | 
						||
| 
								 | 
							
								            // and set to a suitably small value.  The only test case we've been able to
							 | 
						||
| 
								 | 
							
								            // find for this, is when v = 8.5 and x = 4*PI.
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            if(gamma == 0)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               gamma = u * tools::epsilon<T>() / x;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(current);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(W);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(q);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(gamma);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(p);
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(t);
							 | 
						||
| 
								 | 
							
								            Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
							 | 
						||
| 
								 | 
							
								            BOOST_MATH_INSTRUMENT_VARIABLE(Ju);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            Jv = Ju * ratio;                    // normalization
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            Yu = gamma * Ju;
							 | 
						||
| 
								 | 
							
								            Yu1 = Yu * (u/x - p - q/gamma);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if(kind&need_y)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               // compute Y:
							 | 
						||
| 
								 | 
							
								               prev = Yu;
							 | 
						||
| 
								 | 
							
								               current = Yu1;
							 | 
						||
| 
								 | 
							
								               policies::check_series_iterations<T>(function, n, pol);
							 | 
						||
| 
								 | 
							
								               for (k = 1; k <= n; k++)            // forward recurrence for Y
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  T fact = 2 * (u + k) / x;
							 | 
						||
| 
								 | 
							
								                  if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
							 | 
						||
| 
								 | 
							
								                  {
							 | 
						||
| 
								 | 
							
								                     prev /= current;
							 | 
						||
| 
								 | 
							
								                     Yv_scale /= current;
							 | 
						||
| 
								 | 
							
								                     current = 1;
							 | 
						||
| 
								 | 
							
								                  }
							 | 
						||
| 
								 | 
							
								                  next = fact * current - prev;
							 | 
						||
| 
								 | 
							
								                  prev = current;
							 | 
						||
| 
								 | 
							
								                  current = next;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               Yv = prev;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         if (reflect)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv)))
							 | 
						||
| 
								 | 
							
								               *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale));     // reflection formula
							 | 
						||
| 
								 | 
							
								            if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv)))
							 | 
						||
| 
								 | 
							
								               *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale));
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         else
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            *J = Jv;
							 | 
						||
| 
								 | 
							
								            if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv))
							 | 
						||
| 
								 | 
							
								               *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               *Y = Yv / Yv_scale;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         return 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   } // namespace detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}} // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_BESSEL_JY_HPP
							 | 
						||
| 
								 | 
							
								
							 |