528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  Copyright John Maddock 2010.
							 | 
						||
| 
								 | 
							
								//  Copyright Paul A. Bristow 2010.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_STATS_INVERSE_GAUSSIAN_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma warning(disable: 4512) // assignment operator could not be generated
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
							 | 
						||
| 
								 | 
							
								// http://mathworld.wolfram.com/InverseGaussianDistribution.html
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// The normal-inverse Gaussian distribution
							 | 
						||
| 
								 | 
							
								// also called the Wald distribution (some sources limit this to when mean = 1).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// It is the continuous probability distribution
							 | 
						||
| 
								 | 
							
								// that is defined as the normal variance-mean mixture where the mixing density is the 
							 | 
						||
| 
								 | 
							
								// inverse Gaussian distribution. The tails of the distribution decrease more slowly
							 | 
						||
| 
								 | 
							
								// than the normal distribution. It is therefore suitable to model phenomena
							 | 
						||
| 
								 | 
							
								// where numerically large values are more probable than is the case for the normal distribution.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
							 | 
						||
| 
								 | 
							
								// In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse 
							 | 
						||
| 
								 | 
							
								// relationship between the time to cover a unit distance and distance covered in unit time.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Examples are returns from financial assets and turbulent wind speeds. 
							 | 
						||
| 
								 | 
							
								// The normal-inverse Gaussian distributions form
							 | 
						||
| 
								 | 
							
								// a subclass of the generalised hyperbolic distributions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// See also
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// http://en.wikipedia.org/wiki/Normal_distribution
							 | 
						||
| 
								 | 
							
								// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
							 | 
						||
| 
								 | 
							
								// Also:
							 | 
						||
| 
								 | 
							
								// Weisstein, Eric W. "Normal Distribution."
							 | 
						||
| 
								 | 
							
								// From MathWorld--A Wolfram Web Resource.
							 | 
						||
| 
								 | 
							
								// http://mathworld.wolfram.com/NormalDistribution.html
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
							 | 
						||
| 
								 | 
							
								// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
							 | 
						||
| 
								 | 
							
								// R package for dinverse_gaussian, ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// http://www.statsci.org/s/inverse_gaussian.s  and http://www.statsci.org/s/inverse_gaussian.html
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//#include <boost/math/distributions/fwd.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/complement.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/detail/common_error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/normal.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/gamma.hpp> // for gamma function
							 | 
						||
| 
								 | 
							
								// using boost::math::gamma_p;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/tuple.hpp>
							 | 
						||
| 
								 | 
							
								//using std::tr1::tuple;
							 | 
						||
| 
								 | 
							
								//using std::tr1::make_tuple;
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/roots.hpp>
							 | 
						||
| 
								 | 
							
								//using boost::math::tools::newton_raphson_iterate;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <utility>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost{ namespace math{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType = double, class Policy = policies::policy<> >
							 | 
						||
| 
								 | 
							
								class inverse_gaussian_distribution
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								   typedef RealType value_type;
							 | 
						||
| 
								 | 
							
								   typedef Policy policy_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1)
							 | 
						||
| 
								 | 
							
								      : m_mean(l_mean), m_scale(l_scale)
							 | 
						||
| 
								 | 
							
								   { // Default is a 1,1 inverse_gaussian distribution.
							 | 
						||
| 
								 | 
							
								     static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     RealType result;
							 | 
						||
| 
								 | 
							
								     detail::check_scale(function, l_scale, &result, Policy());
							 | 
						||
| 
								 | 
							
								     detail::check_location(function, l_mean, &result, Policy());
							 | 
						||
| 
								 | 
							
								     detail::check_x_gt0(function, l_mean, &result, Policy());
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType mean()const
							 | 
						||
| 
								 | 
							
								   { // alias for location.
							 | 
						||
| 
								 | 
							
								      return m_mean; // aka mu
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // Synonyms, provided to allow generic use of find_location and find_scale.
							 | 
						||
| 
								 | 
							
								   RealType location()const
							 | 
						||
| 
								 | 
							
								   { // location, aka mu.
							 | 
						||
| 
								 | 
							
								      return m_mean;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   RealType scale()const
							 | 
						||
| 
								 | 
							
								   { // scale, aka lambda.
							 | 
						||
| 
								 | 
							
								      return m_scale;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType shape()const
							 | 
						||
| 
								 | 
							
								   { // shape, aka phi = lambda/mu.
							 | 
						||
| 
								 | 
							
								      return m_scale / m_mean;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Data members:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   RealType m_mean;  // distribution mean or location, aka mu.
							 | 
						||
| 
								 | 
							
								   RealType m_scale;    // distribution standard deviation or scale, aka lambda.
							 | 
						||
| 
								 | 
							
								}; // class normal_distribution
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef inverse_gaussian_distribution<double> inverse_gaussian;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
							 | 
						||
| 
								 | 
							
								{ // Range of permissible values for random variable x, zero to max.
							 | 
						||
| 
								 | 
							
								   using boost::math::tools::max_value;
							 | 
						||
| 
								 | 
							
								   return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
							 | 
						||
| 
								 | 
							
								{ // Range of supported values for random variable x, zero to max.
							 | 
						||
| 
								 | 
							
								  // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
							 | 
						||
| 
								 | 
							
								   using boost::math::tools::max_value;
							 | 
						||
| 
								 | 
							
								   return std::pair<RealType, RealType>(static_cast<RealType>(0.),  max_value<RealType>()); // - to + max value.
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
							 | 
						||
| 
								 | 
							
								{ // Probability Density Function
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // for ADL of std functions
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								   RealType mean = dist.mean();
							 | 
						||
| 
								 | 
							
								   RealType result = 0;
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_scale(function, scale, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_location(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_x_gt0(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_positive_x(function, x, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if (x == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								     return 0; // Convenient, even if not defined mathematically.
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   result =
							 | 
						||
| 
								 | 
							
								     sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
							 | 
						||
| 
								 | 
							
								    * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								} // pdf
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
							 | 
						||
| 
								 | 
							
								{ // Cumulative Density Function.
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // for ADL of std functions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								   RealType mean = dist.mean();
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								   RealType result = 0;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_scale(function, scale, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_location(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_positive_x(function, x, &result, Policy()))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								     return result;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if (x == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								     return 0; // Convenient, even if not defined mathematically.
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   // Problem with this formula for large scale > 1000 or small x, 
							 | 
						||
| 
								 | 
							
								   //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
							 | 
						||
| 
								 | 
							
								   //  + exp(2 * scale / mean) / 2 
							 | 
						||
| 
								 | 
							
								   //  * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
							 | 
						||
| 
								 | 
							
								   // so use normal distribution version:
							 | 
						||
| 
								 | 
							
								   // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   normal_distribution<RealType> n01;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType n0 = sqrt(scale / x);
							 | 
						||
| 
								 | 
							
								   n0 *= ((x / mean) -1);
							 | 
						||
| 
								 | 
							
								   RealType n1 = cdf(n01, n0);
							 | 
						||
| 
								 | 
							
								   RealType expfactor = exp(2 * scale / mean);
							 | 
						||
| 
								 | 
							
								   RealType n3 = - sqrt(scale / x);
							 | 
						||
| 
								 | 
							
								   n3 *= (x / mean) + 1;
							 | 
						||
| 
								 | 
							
								   RealType n4 = cdf(n01, n3);
							 | 
						||
| 
								 | 
							
								   result = n1 + expfactor * n4;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								} // cdf
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								struct inverse_gaussian_quantile_functor
							 | 
						||
| 
								 | 
							
								{ 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
							 | 
						||
| 
								 | 
							
								    : distribution(dist), prob(p)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  boost::math::tuple<RealType, RealType> operator()(RealType const& x)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    RealType c = cdf(distribution, x);
							 | 
						||
| 
								 | 
							
								    RealType fx = c - prob;  // Difference cdf - value - to minimize.
							 | 
						||
| 
								 | 
							
								    RealType dx = pdf(distribution, x); // pdf is 1st derivative.
							 | 
						||
| 
								 | 
							
								    // return both function evaluation difference f(x) and 1st derivative f'(x).
							 | 
						||
| 
								 | 
							
								    return boost::math::make_tuple(fx, dx);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  private:
							 | 
						||
| 
								 | 
							
								  const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
							 | 
						||
| 
								 | 
							
								  RealType prob; 
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								struct inverse_gaussian_quantile_complement_functor
							 | 
						||
| 
								 | 
							
								{ 
							 | 
						||
| 
								 | 
							
								    inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
							 | 
						||
| 
								 | 
							
								    : distribution(dist), prob(p)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  boost::math::tuple<RealType, RealType> operator()(RealType const& x)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    RealType c = cdf(complement(distribution, x));
							 | 
						||
| 
								 | 
							
								    RealType fx = c - prob;  // Difference cdf - value - to minimize.
							 | 
						||
| 
								 | 
							
								    RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
							 | 
						||
| 
								 | 
							
								    // return both function evaluation difference f(x) and 1st derivative f'(x).
							 | 
						||
| 
								 | 
							
								    //return std::tr1::make_tuple(fx, dx); if available.
							 | 
						||
| 
								 | 
							
								    return boost::math::make_tuple(fx, dx);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  private:
							 | 
						||
| 
								 | 
							
								  const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
							 | 
						||
| 
								 | 
							
								  RealType prob; 
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace detail
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  template <class RealType>
							 | 
						||
| 
								 | 
							
								  inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
							 | 
						||
| 
								 | 
							
								  { // guess at random variate value x for inverse gaussian quantile.
							 | 
						||
| 
								 | 
							
								      BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								      using boost::math::policies::policy;
							 | 
						||
| 
								 | 
							
								      // Error type.
							 | 
						||
| 
								 | 
							
								      using boost::math::policies::overflow_error;
							 | 
						||
| 
								 | 
							
								      // Action.
							 | 
						||
| 
								 | 
							
								      using boost::math::policies::ignore_error;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      typedef policy<
							 | 
						||
| 
								 | 
							
								        overflow_error<ignore_error> // Ignore overflow (return infinity)
							 | 
						||
| 
								 | 
							
								      > no_overthrow_policy;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    RealType x; // result is guess at random variate value x.
							 | 
						||
| 
								 | 
							
								    RealType phi = lambda / mu;
							 | 
						||
| 
								 | 
							
								    if (phi > 2.)
							 | 
						||
| 
								 | 
							
								    { // Big phi, so starting to look like normal Gaussian distribution.
							 | 
						||
| 
								 | 
							
								      //    x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
							 | 
						||
| 
								 | 
							
								      // Whitmore, G.A. and Yalovsky, M.
							 | 
						||
| 
								 | 
							
								      // A normalising logarithmic transformation for inverse Gaussian random variables,
							 | 
						||
| 
								 | 
							
								      // Technometrics 20-2, 207-208 (1978), but using expression from
							 | 
						||
| 
								 | 
							
								      // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								      normal_distribution<RealType, no_overthrow_policy> n01;
							 | 
						||
| 
								 | 
							
								      x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								    { // phi < 2 so much less symmetrical with long tail,
							 | 
						||
| 
								 | 
							
								      // so use gamma distribution as an approximation.
							 | 
						||
| 
								 | 
							
								      using boost::math::gamma_distribution;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Define the distribution, using gamma_nooverflow:
							 | 
						||
| 
								 | 
							
								      typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
							 | 
						||
| 
								 | 
							
								      // R qgamma(0.2, 0.5, 1)  0.0320923
							 | 
						||
| 
								 | 
							
								      RealType qg = quantile(complement(g, p));
							 | 
						||
| 
								 | 
							
								      //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
							 | 
						||
| 
								 | 
							
								      x = lambda / (qg * 2);
							 | 
						||
| 
								 | 
							
								      // 
							 | 
						||
| 
								 | 
							
								      if (x > mu/2) // x > mu /2?
							 | 
						||
| 
								 | 
							
								      { // x too large for the gamma approximation to work well.
							 | 
						||
| 
								 | 
							
								        //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
							 | 
						||
| 
								 | 
							
								        RealType q = quantile(g, p);
							 | 
						||
| 
								 | 
							
								       // x = mu * exp(q * static_cast<RealType>(0.1));  // Said to improve at high p
							 | 
						||
| 
								 | 
							
								       // x = mu * x;  // Improves at high p?
							 | 
						||
| 
								 | 
							
								        x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return x;
							 | 
						||
| 
								 | 
							
								  }  // guess_ig
							 | 
						||
| 
								 | 
							
								} // namespace detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // for ADL of std functions.
							 | 
						||
| 
								 | 
							
								   // No closed form exists so guess and use Newton Raphson iteration.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType mean = dist.mean();
							 | 
						||
| 
								 | 
							
								   RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType result = 0;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_scale(function, scale, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_location(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_probability(function, p, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if (p == 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								     return 0; // Convenient, even if not defined mathematically?
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if (p == 1)
							 | 
						||
| 
								 | 
							
								   { // overflow 
							 | 
						||
| 
								 | 
							
								      result = policies::raise_overflow_error<RealType>(function,
							 | 
						||
| 
								 | 
							
								        "probability parameter is 1, but must be < 1!", Policy());
							 | 
						||
| 
								 | 
							
								      return result; // std::numeric_limits<RealType>::infinity();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
							 | 
						||
| 
								 | 
							
								  using boost::math::tools::max_value;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  RealType min = 0.; // Minimum possible value is bottom of range of distribution.
							 | 
						||
| 
								 | 
							
								  RealType max = max_value<RealType>();// Maximum possible value is top of range. 
							 | 
						||
| 
								 | 
							
								  // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
							 | 
						||
| 
								 | 
							
								  // digits used to control how accurate to try to make the result.
							 | 
						||
| 
								 | 
							
								  // To allow user to control accuracy versus speed,
							 | 
						||
| 
								 | 
							
								  int get_digits = policies::digits<RealType, Policy>();// get digits from policy, 
							 | 
						||
| 
								 | 
							
								  boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
							 | 
						||
| 
								 | 
							
								  using boost::math::tools::newton_raphson_iterate;
							 | 
						||
| 
								 | 
							
								  result =
							 | 
						||
| 
								 | 
							
								    newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m);
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								} // quantile
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // for ADL of std functions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType scale = c.dist.scale();
							 | 
						||
| 
								 | 
							
								   RealType mean = c.dist.mean();
							 | 
						||
| 
								 | 
							
								   RealType x = c.param;
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
							 | 
						||
| 
								 | 
							
								   // infinite arguments not supported.
							 | 
						||
| 
								 | 
							
								   //if((boost::math::isinf)(x))
							 | 
						||
| 
								 | 
							
								   //{
							 | 
						||
| 
								 | 
							
								   //  if(x < 0) return 1; // cdf complement -infinity is unity.
							 | 
						||
| 
								 | 
							
								   //  return 0; // cdf complement +infinity is zero
							 | 
						||
| 
								 | 
							
								   //}
							 | 
						||
| 
								 | 
							
								   // These produce MSVC 4127 warnings, so the above used instead.
							 | 
						||
| 
								 | 
							
								   //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
							 | 
						||
| 
								 | 
							
								   //{ // cdf complement +infinity is zero.
							 | 
						||
| 
								 | 
							
								   //  return 0;
							 | 
						||
| 
								 | 
							
								   //}
							 | 
						||
| 
								 | 
							
								   //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
							 | 
						||
| 
								 | 
							
								   //{ // cdf complement -infinity is unity.
							 | 
						||
| 
								 | 
							
								   //  return 1;
							 | 
						||
| 
								 | 
							
								   //}
							 | 
						||
| 
								 | 
							
								   RealType result = 0;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_scale(function, scale, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_location(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_positive_x(function, x, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   normal_distribution<RealType> n01;
							 | 
						||
| 
								 | 
							
								   RealType n0 = sqrt(scale / x);
							 | 
						||
| 
								 | 
							
								   n0 *= ((x / mean) -1);
							 | 
						||
| 
								 | 
							
								   RealType cdf_1 = cdf(complement(n01, n0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType expfactor = exp(2 * scale / mean);
							 | 
						||
| 
								 | 
							
								   RealType n3 = - sqrt(scale / x);
							 | 
						||
| 
								 | 
							
								   n3 *= (x / mean) + 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
							 | 
						||
| 
								 | 
							
								   RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
							 | 
						||
| 
								 | 
							
								   // RealType n4 = cdf(n01, n3); // = 
							 | 
						||
| 
								 | 
							
								   result = cdf_1 - expfactor * n6; 
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								} // cdf complement
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING  // for ADL of std functions
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType scale = c.dist.scale();
							 | 
						||
| 
								 | 
							
								   RealType mean = c.dist.mean();
							 | 
						||
| 
								 | 
							
								   static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
							 | 
						||
| 
								 | 
							
								   RealType result = 0;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_scale(function, scale, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_location(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								   RealType q = c.param;
							 | 
						||
| 
								 | 
							
								   if(false == detail::check_probability(function, q, &result, Policy()))
							 | 
						||
| 
								 | 
							
								      return result;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType guess = detail::guess_ig(q, mean, scale);
							 | 
						||
| 
								 | 
							
								   // Complement.
							 | 
						||
| 
								 | 
							
								   using boost::math::tools::max_value;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  RealType min = 0.; // Minimum possible value is bottom of range of distribution.
							 | 
						||
| 
								 | 
							
								  RealType max = max_value<RealType>();// Maximum possible value is top of range. 
							 | 
						||
| 
								 | 
							
								  // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
							 | 
						||
| 
								 | 
							
								  // digits used to control how accurate to try to make the result.
							 | 
						||
| 
								 | 
							
								  int get_digits = policies::digits<RealType, Policy>();
							 | 
						||
| 
								 | 
							
								  boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
							 | 
						||
| 
								 | 
							
								  using boost::math::tools::newton_raphson_iterate;
							 | 
						||
| 
								 | 
							
								  result =
							 | 
						||
| 
								 | 
							
								    newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m);
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								} // quantile
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{ // aka mu
							 | 
						||
| 
								 | 
							
								   return dist.mean();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{ // aka lambda
							 | 
						||
| 
								 | 
							
								   return dist.scale();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{ // aka phi
							 | 
						||
| 
								 | 
							
								   return dist.shape();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								  RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								  RealType mean = dist.mean();
							 | 
						||
| 
								 | 
							
								  RealType result = sqrt(mean * mean * mean / scale);
							 | 
						||
| 
								 | 
							
								  return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								  RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								  RealType  mean = dist.mean();
							 | 
						||
| 
								 | 
							
								  RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) 
							 | 
						||
| 
								 | 
							
								      - 3 * mean / (2 * scale));
							 | 
						||
| 
								 | 
							
								  return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								  RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								  RealType  mean = dist.mean();
							 | 
						||
| 
								 | 
							
								  RealType result = 3 * sqrt(mean/scale);
							 | 
						||
| 
								 | 
							
								  return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								  RealType  mean = dist.mean();
							 | 
						||
| 
								 | 
							
								  RealType result = 15 * mean / scale -3;
							 | 
						||
| 
								 | 
							
								  return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType, class Policy>
							 | 
						||
| 
								 | 
							
								inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  RealType scale = dist.scale();
							 | 
						||
| 
								 | 
							
								  RealType  mean = dist.mean();
							 | 
						||
| 
								 | 
							
								  RealType result = 15 * mean / scale;
							 | 
						||
| 
								 | 
							
								  return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace math
							 | 
						||
| 
								 | 
							
								} // namespace boost
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// This include must be at the end, *after* the accessors
							 | 
						||
| 
								 | 
							
								// for this distribution have been defined, in order to
							 | 
						||
| 
								 | 
							
								// keep compilers that support two-phase lookup happy.
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/detail/derived_accessors.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 |