203 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			203 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  Copyright (c) 2006 Xiaogang Zhang
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_BESSEL_Y1_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_BESSEL_Y1_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#pragma warning(push)
							 | 
						||
| 
								 | 
							
								#pragma warning(disable:4702) // Unreachable code (release mode only warning)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_j1.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/constants/constants.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/rational.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/big_constant.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/policies/error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/assert.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Bessel function of the second kind of order one
							 | 
						||
| 
								 | 
							
								// x <= 8, minimax rational approximations on root-bracketing intervals
							 | 
						||
| 
								 | 
							
								// x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost { namespace math { namespace detail{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								T bessel_y1(T x, const Policy&);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class Policy>
							 | 
						||
| 
								 | 
							
								struct bessel_y1_initializer
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   struct init
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      init()
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         do_init();
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      static void do_init()
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         bessel_y1(T(1), Policy());
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      void force_instantiate()const{}
							 | 
						||
| 
								 | 
							
								   };
							 | 
						||
| 
								 | 
							
								   static const init initializer;
							 | 
						||
| 
								 | 
							
								   static void force_instantiate()
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      initializer.force_instantiate();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class Policy>
							 | 
						||
| 
								 | 
							
								const typename bessel_y1_initializer<T, Policy>::init bessel_y1_initializer<T, Policy>::initializer;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								T bessel_y1(T x, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    bessel_y1_initializer<T, Policy>::force_instantiate();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    static const T P1[] = {
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0535726612579544093e+13)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4708611716525426053e+12)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7595974497819597599e+11)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2144548214502560419e+09)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9157479997408395984e+07)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2157953222280260820e+05)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1714424660046133456e+02)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T Q1[] = {
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0737873921079286084e+14)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1272286200406461981e+12)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7800352738690585613e+10)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2250435122182963220e+08)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8136470753052572164e+05)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.2079908168393867438e+02)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T P2[] = {
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1514276357909013326e+19)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.6808094574724204577e+18)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3638408497043134724e+16)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0686275289804744814e+15)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9530713129741981618e+13)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7453673962438488783e+11)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1957961912070617006e+09)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9153806858264202986e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2337180442012953128e+03)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T Q2[] = {
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3321844313316185697e+20)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.6968198822857178911e+18)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0837179548112881950e+16)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1187010065856971027e+14)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0221766852960403645e+11)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.3550318087088919566e+08)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0453748201934079734e+06)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2855164849321609336e+03)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T PC[] = {
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T QC[] = {
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)),
							 | 
						||
| 
								 | 
							
								        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T PS[] = {
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T QS[] = {
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)),
							 | 
						||
| 
								 | 
							
								         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1971413260310170351e+00)),
							 | 
						||
| 
								 | 
							
								                   x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4296810407941351328e+00)),
							 | 
						||
| 
								 | 
							
								                   x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.620e+02)),
							 | 
						||
| 
								 | 
							
								                   x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8288260310170351490e-03)),
							 | 
						||
| 
								 | 
							
								                   x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3900e+03)),
							 | 
						||
| 
								 | 
							
								                   x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.4592058648672279948e-06))
							 | 
						||
| 
								 | 
							
								    ;
							 | 
						||
| 
								 | 
							
								    T value, factor, r, rc, rs;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								    using namespace boost::math::tools;
							 | 
						||
| 
								 | 
							
								    using namespace boost::math::constants;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (x <= 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								       return policies::raise_domain_error<T>("bost::math::bessel_y1<%1%>(%1%,%1%)",
							 | 
						||
| 
								 | 
							
								            "Got x == %1%, but x must be > 0, complex result not supported.", x, pol);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (x <= 4)                       // x in (0, 4]
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        T y = x * x;
							 | 
						||
| 
								 | 
							
								        T z = 2 * log(x/x1) * bessel_j1(x) / pi<T>();
							 | 
						||
| 
								 | 
							
								        r = evaluate_rational(P1, Q1, y);
							 | 
						||
| 
								 | 
							
								        factor = (x + x1) * ((x - x11/256) - x12) / x;
							 | 
						||
| 
								 | 
							
								        value = z + factor * r;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else if (x <= 8)                  // x in (4, 8]
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        T y = x * x;
							 | 
						||
| 
								 | 
							
								        T z = 2 * log(x/x2) * bessel_j1(x) / pi<T>();
							 | 
						||
| 
								 | 
							
								        r = evaluate_rational(P2, Q2, y);
							 | 
						||
| 
								 | 
							
								        factor = (x + x2) * ((x - x21/256) - x22) / x;
							 | 
						||
| 
								 | 
							
								        value = z + factor * r;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else                                // x in (8, \infty)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        T y = 8 / x;
							 | 
						||
| 
								 | 
							
								        T y2 = y * y;
							 | 
						||
| 
								 | 
							
								        rc = evaluate_rational(PC, QC, y2);
							 | 
						||
| 
								 | 
							
								        rs = evaluate_rational(PS, QS, y2);
							 | 
						||
| 
								 | 
							
								        factor = 1 / (sqrt(x) * root_pi<T>());
							 | 
						||
| 
								 | 
							
								        //
							 | 
						||
| 
								 | 
							
								        // This code is really just:
							 | 
						||
| 
								 | 
							
								        //
							 | 
						||
| 
								 | 
							
								        // T z = x - 0.75f * pi<T>();
							 | 
						||
| 
								 | 
							
								        // value = factor * (rc * sin(z) + y * rs * cos(z));
							 | 
						||
| 
								 | 
							
								        //
							 | 
						||
| 
								 | 
							
								        // But using the sin/cos addition rules, plus constants for sin/cos of 3PI/4
							 | 
						||
| 
								 | 
							
								        // which then cancel out with corresponding terms in "factor".
							 | 
						||
| 
								 | 
							
								        //
							 | 
						||
| 
								 | 
							
								        T sx = sin(x);
							 | 
						||
| 
								 | 
							
								        T cx = cos(x);
							 | 
						||
| 
								 | 
							
								        value = factor * (y * rs * (sx - cx) - rc * (sx + cx));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return value;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}}} // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma warning(pop)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_BESSEL_Y1_HPP
							 | 
						||
| 
								 | 
							
								
							 |