720 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			720 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  (C) Copyright John Maddock 2006.
							 | 
						||
| 
								 | 
							
								//  (C) Copyright Jeremy William Murphy 2015.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_TOOLS_POLYNOMIAL_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/assert.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/config.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/config/suffix.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/function.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/lambda/lambda.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/rational.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/real_cast.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/policies/error_handling.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/binomial.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/operators.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <vector>
							 | 
						||
| 
								 | 
							
								#include <ostream>
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
							 | 
						||
| 
								 | 
							
								#include <initializer_list>
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost{ namespace math{ namespace tools{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								T chebyshev_coefficient(unsigned n, unsigned m)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   if(m > n)
							 | 
						||
| 
								 | 
							
								      return 0;
							 | 
						||
| 
								 | 
							
								   if((n & 1) != (m & 1))
							 | 
						||
| 
								 | 
							
								      return 0;
							 | 
						||
| 
								 | 
							
								   if(n == 0)
							 | 
						||
| 
								 | 
							
								      return 1;
							 | 
						||
| 
								 | 
							
								   T result = T(n) / 2;
							 | 
						||
| 
								 | 
							
								   unsigned r = n - m;
							 | 
						||
| 
								 | 
							
								   r /= 2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   BOOST_ASSERT(n - 2 * r == m);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   if(r & 1)
							 | 
						||
| 
								 | 
							
								      result = -result;
							 | 
						||
| 
								 | 
							
								   result /= n - r;
							 | 
						||
| 
								 | 
							
								   result *= boost::math::binomial_coefficient<T>(n - r, r);
							 | 
						||
| 
								 | 
							
								   result *= ldexp(1.0f, m);
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class Seq>
							 | 
						||
| 
								 | 
							
								Seq polynomial_to_chebyshev(const Seq& s)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // Converts a Polynomial into Chebyshev form:
							 | 
						||
| 
								 | 
							
								   typedef typename Seq::value_type value_type;
							 | 
						||
| 
								 | 
							
								   typedef typename Seq::difference_type difference_type;
							 | 
						||
| 
								 | 
							
								   Seq result(s);
							 | 
						||
| 
								 | 
							
								   difference_type order = s.size() - 1;
							 | 
						||
| 
								 | 
							
								   difference_type even_order = order & 1 ? order - 1 : order;
							 | 
						||
| 
								 | 
							
								   difference_type odd_order = order & 1 ? order : order - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   for(difference_type i = even_order; i >= 0; i -= 2)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      value_type val = s[i];
							 | 
						||
| 
								 | 
							
								      for(difference_type k = even_order; k > i; k -= 2)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
							 | 
						||
| 
								 | 
							
								      result[i] = val;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   result[0] *= 2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   for(difference_type i = odd_order; i >= 0; i -= 2)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      value_type val = s[i];
							 | 
						||
| 
								 | 
							
								      for(difference_type k = odd_order; k > i; k -= 2)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
							 | 
						||
| 
								 | 
							
								      result[i] = val;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class Seq, class T>
							 | 
						||
| 
								 | 
							
								T evaluate_chebyshev(const Seq& a, const T& x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // Clenshaw's formula:
							 | 
						||
| 
								 | 
							
								   typedef typename Seq::difference_type difference_type;
							 | 
						||
| 
								 | 
							
								   T yk2 = 0;
							 | 
						||
| 
								 | 
							
								   T yk1 = 0;
							 | 
						||
| 
								 | 
							
								   T yk = 0;
							 | 
						||
| 
								 | 
							
								   for(difference_type i = a.size() - 1; i >= 1; --i)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      yk2 = yk1;
							 | 
						||
| 
								 | 
							
								      yk1 = yk;
							 | 
						||
| 
								 | 
							
								      yk = 2 * x * yk1 - yk2 + a[i];
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return a[0] / 2 + yk * x - yk1;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								class polynomial;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace detail {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
							 | 
						||
| 
								 | 
							
								* Chapter 4.6.1, Algorithm D: Division of polynomials over a field.
							 | 
						||
| 
								 | 
							
								*
							 | 
						||
| 
								 | 
							
								* @tparam  T   Coefficient type, must be not be an integer.
							 | 
						||
| 
								 | 
							
								*
							 | 
						||
| 
								 | 
							
								* Template-parameter T actually must be a field but we don't currently have that
							 | 
						||
| 
								 | 
							
								* subtlety of distinction.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								template <typename T, typename N>
							 | 
						||
| 
								 | 
							
								BOOST_DEDUCED_TYPENAME disable_if_c<std::numeric_limits<T>::is_integer, void >::type
							 | 
						||
| 
								 | 
							
								division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    q[k] = u[n + k] / v[n];
							 | 
						||
| 
								 | 
							
								    for (N j = n + k; j > k;)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        j--;
							 | 
						||
| 
								 | 
							
								        u[j] -= q[k] * v[j - k];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class N>
							 | 
						||
| 
								 | 
							
								T integer_power(T t, N n)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   switch(n)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								   case 0:
							 | 
						||
| 
								 | 
							
								      return static_cast<T>(1u);
							 | 
						||
| 
								 | 
							
								   case 1:
							 | 
						||
| 
								 | 
							
								      return t;
							 | 
						||
| 
								 | 
							
								   case 2:
							 | 
						||
| 
								 | 
							
								      return t * t;
							 | 
						||
| 
								 | 
							
								   case 3:
							 | 
						||
| 
								 | 
							
								      return t * t * t;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   T result = integer_power(t, n / 2);
							 | 
						||
| 
								 | 
							
								   result *= result;
							 | 
						||
| 
								 | 
							
								   if(n & 1)
							 | 
						||
| 
								 | 
							
								      result *= t;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
							 | 
						||
| 
								 | 
							
								* Chapter 4.6.1, Algorithm R: Pseudo-division of polynomials.
							 | 
						||
| 
								 | 
							
								*
							 | 
						||
| 
								 | 
							
								* @tparam  T   Coefficient type, must be an integer.
							 | 
						||
| 
								 | 
							
								*
							 | 
						||
| 
								 | 
							
								* Template-parameter T actually must be a unique factorization domain but we
							 | 
						||
| 
								 | 
							
								* don't currently have that subtlety of distinction.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								template <typename T, typename N>
							 | 
						||
| 
								 | 
							
								BOOST_DEDUCED_TYPENAME enable_if_c<std::numeric_limits<T>::is_integer, void >::type
							 | 
						||
| 
								 | 
							
								division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    q[k] = u[n + k] * integer_power(v[n], k);
							 | 
						||
| 
								 | 
							
								    for (N j = n + k; j > 0;)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        j--;
							 | 
						||
| 
								 | 
							
								        u[j] = v[n] * u[j] - (j < k ? T(0) : u[n + k] * v[j - k]);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
							 | 
						||
| 
								 | 
							
								 * Chapter 4.6.1, Algorithm D and R: Main loop.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param   u   Dividend.
							 | 
						||
| 
								 | 
							
								 * @param   v   Divisor.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								std::pair< polynomial<T>, polynomial<T> >
							 | 
						||
| 
								 | 
							
								division(polynomial<T> u, const polynomial<T>& v)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    BOOST_ASSERT(v.size() <= u.size());
							 | 
						||
| 
								 | 
							
								    BOOST_ASSERT(v);
							 | 
						||
| 
								 | 
							
								    BOOST_ASSERT(u);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef typename polynomial<T>::size_type N;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    N const m = u.size() - 1, n = v.size() - 1;
							 | 
						||
| 
								 | 
							
								    N k = m - n;
							 | 
						||
| 
								 | 
							
								    polynomial<T> q;
							 | 
						||
| 
								 | 
							
								    q.data().resize(m - n + 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    do
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        division_impl(q, u, v, n, k);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    while (k-- != 0);
							 | 
						||
| 
								 | 
							
								    u.data().resize(n);
							 | 
						||
| 
								 | 
							
								    u.normalize(); // Occasionally, the remainder is zeroes.
							 | 
						||
| 
								 | 
							
								    return std::make_pair(q, u);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								struct identity
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    T operator()(T const &x) const
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return x;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace detail
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Returns the zero element for multiplication of polynomials.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								polynomial<T> zero_element(std::multiplies< polynomial<T> >)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return polynomial<T>();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								polynomial<T> identity_element(std::multiplies< polynomial<T> >)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return polynomial<T>(T(1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Calculates a / b and a % b, returning the pair (quotient, remainder) together
							 | 
						||
| 
								 | 
							
								 * because the same amount of computation yields both.
							 | 
						||
| 
								 | 
							
								 * This function is not defined for division by zero: user beware.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								std::pair< polynomial<T>, polynomial<T> >
							 | 
						||
| 
								 | 
							
								quotient_remainder(const polynomial<T>& dividend, const polynomial<T>& divisor)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    BOOST_ASSERT(divisor);
							 | 
						||
| 
								 | 
							
								    if (dividend.size() < divisor.size())
							 | 
						||
| 
								 | 
							
								        return std::make_pair(polynomial<T>(), dividend);
							 | 
						||
| 
								 | 
							
								    return detail::division(dividend, divisor);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								class polynomial :
							 | 
						||
| 
								 | 
							
								    equality_comparable< polynomial<T>,
							 | 
						||
| 
								 | 
							
								    dividable< polynomial<T>,
							 | 
						||
| 
								 | 
							
								    dividable2< polynomial<T>, T,
							 | 
						||
| 
								 | 
							
								    modable< polynomial<T>,
							 | 
						||
| 
								 | 
							
								    modable2< polynomial<T>, T > > > > >
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
								   // typedefs:
							 | 
						||
| 
								 | 
							
								   typedef typename std::vector<T>::value_type value_type;
							 | 
						||
| 
								 | 
							
								   typedef typename std::vector<T>::size_type size_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // construct:
							 | 
						||
| 
								 | 
							
								   polynomial(){}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial(const U* data, unsigned order)
							 | 
						||
| 
								 | 
							
								      : m_data(data, data + order + 1)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class I>
							 | 
						||
| 
								 | 
							
								   polynomial(I first, I last)
							 | 
						||
| 
								 | 
							
								   : m_data(first, last)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   explicit polynomial(const U& point)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       if (point != U(0))
							 | 
						||
| 
								 | 
							
								          m_data.push_back(point);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // copy:
							 | 
						||
| 
								 | 
							
								   polynomial(const polynomial& p)
							 | 
						||
| 
								 | 
							
								      : m_data(p.m_data) { }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial(const polynomial<U>& p)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      for(unsigned i = 0; i < p.size(); ++i)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         m_data.push_back(boost::math::tools::real_cast<T>(p[i]));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
							 | 
						||
| 
								 | 
							
								    polynomial(std::initializer_list<T> l) : polynomial(std::begin(l), std::end(l))
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    polynomial&
							 | 
						||
| 
								 | 
							
								    operator=(std::initializer_list<T> l)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        m_data.assign(std::begin(l), std::end(l));
							 | 
						||
| 
								 | 
							
								        normalize();
							 | 
						||
| 
								 | 
							
								        return *this;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // access:
							 | 
						||
| 
								 | 
							
								   size_type size()const { return m_data.size(); }
							 | 
						||
| 
								 | 
							
								   size_type degree()const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       if (size() == 0)
							 | 
						||
| 
								 | 
							
								           throw std::logic_error("degree() is undefined for the zero polynomial.");
							 | 
						||
| 
								 | 
							
								       return m_data.size() - 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								   value_type& operator[](size_type i)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return m_data[i];
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   const value_type& operator[](size_type i)const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return m_data[i];
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   T evaluate(T z)const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return m_data.size() > 0 ? boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size()) : 0;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   std::vector<T> chebyshev()const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      return polynomial_to_chebyshev(m_data);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   std::vector<T> const& data() const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       return m_data;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   std::vector<T> & data()
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       return m_data;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // operators:
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator +=(const U& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       addition(value);
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator -=(const U& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       subtraction(value);
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator *=(const U& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      multiplication(value);
							 | 
						||
| 
								 | 
							
								      normalize();
							 | 
						||
| 
								 | 
							
								      return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator /=(const U& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       division(value);
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator %=(const U& /*value*/)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       // We can always divide by a scalar, so there is no remainder:
							 | 
						||
| 
								 | 
							
								       this->set_zero();
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator +=(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      addition(value);
							 | 
						||
| 
								 | 
							
								      normalize();
							 | 
						||
| 
								 | 
							
								      return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator -=(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       subtraction(value);
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   template <class U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator *=(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      // TODO: FIXME: use O(N log(N)) algorithm!!!
							 | 
						||
| 
								 | 
							
								      if (!value)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								          this->set_zero();
							 | 
						||
| 
								 | 
							
								          return *this;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      std::vector<T> prod(size() + value.size() - 1, T(0));
							 | 
						||
| 
								 | 
							
								      for (size_type i = 0; i < value.size(); ++i)
							 | 
						||
| 
								 | 
							
								         for (size_type j = 0; j < size(); ++j)
							 | 
						||
| 
								 | 
							
								            prod[i+j] += m_data[j] * value[i];
							 | 
						||
| 
								 | 
							
								      m_data.swap(prod);
							 | 
						||
| 
								 | 
							
								      return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <typename U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator /=(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       *this = quotient_remainder(*this, value).first;
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <typename U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator %=(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       *this = quotient_remainder(*this, value).second;
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <typename U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator >>=(U const &n)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       BOOST_ASSERT(n <= m_data.size());
							 | 
						||
| 
								 | 
							
								       m_data.erase(m_data.begin(), m_data.begin() + n);
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   template <typename U>
							 | 
						||
| 
								 | 
							
								   polynomial& operator <<=(U const &n)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       m_data.insert(m_data.begin(), n, static_cast<T>(0));
							 | 
						||
| 
								 | 
							
								       normalize();
							 | 
						||
| 
								 | 
							
								       return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								   // Convenient and efficient query for zero.
							 | 
						||
| 
								 | 
							
								   bool is_zero() const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       return m_data.empty();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								   // Conversion to bool.
							 | 
						||
| 
								 | 
							
								#ifdef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
							 | 
						||
| 
								 | 
							
								   typedef bool (polynomial::*unmentionable_type)() const;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   BOOST_FORCEINLINE operator unmentionable_type() const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       return is_zero() ? false : &polynomial::is_zero;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								   BOOST_FORCEINLINE explicit operator bool() const
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       return !m_data.empty();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // Fast way to set a polynomial to zero.
							 | 
						||
| 
								 | 
							
								   void set_zero()
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       m_data.clear();
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    /** Remove zero coefficients 'from the top', that is for which there are no
							 | 
						||
| 
								 | 
							
								    *        non-zero coefficients of higher degree. */
							 | 
						||
| 
								 | 
							
								   void normalize()
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								       using namespace boost::lambda;
							 | 
						||
| 
								 | 
							
								       m_data.erase(std::find_if(m_data.rbegin(), m_data.rend(), _1 != T(0)).base(), m_data.end());
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								    template <class U, class R1, class R2>
							 | 
						||
| 
								 | 
							
								    polynomial& addition(const U& value, R1 sign, R2 op)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        if(m_data.size() == 0)
							 | 
						||
| 
								 | 
							
								            m_data.push_back(sign(value));
							 | 
						||
| 
								 | 
							
								        else
							 | 
						||
| 
								 | 
							
								            m_data[0] = op(m_data[0], value);
							 | 
						||
| 
								 | 
							
								        return *this;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U>
							 | 
						||
| 
								 | 
							
								    polynomial& addition(const U& value)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return addition(value, detail::identity<U>(), std::plus<U>());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U>
							 | 
						||
| 
								 | 
							
								    polynomial& subtraction(const U& value)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return addition(value, std::negate<U>(), std::minus<U>());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U, class R1, class R2>
							 | 
						||
| 
								 | 
							
								    polynomial& addition(const polynomial<U>& value, R1 sign, R2 op)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        size_type s1 = (std::min)(m_data.size(), value.size());
							 | 
						||
| 
								 | 
							
								        for(size_type i = 0; i < s1; ++i)
							 | 
						||
| 
								 | 
							
								            m_data[i] = op(m_data[i], value[i]);
							 | 
						||
| 
								 | 
							
								        for(size_type i = s1; i < value.size(); ++i)
							 | 
						||
| 
								 | 
							
								            m_data.push_back(sign(value[i]));
							 | 
						||
| 
								 | 
							
								        return *this;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U>
							 | 
						||
| 
								 | 
							
								    polynomial& addition(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return addition(value, detail::identity<U>(), std::plus<U>());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U>
							 | 
						||
| 
								 | 
							
								    polynomial& subtraction(const polynomial<U>& value)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return addition(value, std::negate<U>(), std::minus<U>());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U>
							 | 
						||
| 
								 | 
							
								    polynomial& multiplication(const U& value)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        using namespace boost::lambda;
							 | 
						||
| 
								 | 
							
								        std::transform(m_data.begin(), m_data.end(), m_data.begin(), ret<T>(_1 * value));
							 | 
						||
| 
								 | 
							
								        return *this;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template <class U>
							 | 
						||
| 
								 | 
							
								    polynomial& division(const U& value)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        using namespace boost::lambda;
							 | 
						||
| 
								 | 
							
								        std::transform(m_data.begin(), m_data.end(), m_data.begin(), ret<T>(_1 / value));
							 | 
						||
| 
								 | 
							
								        return *this;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::vector<T> m_data;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result += b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result -= b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result *= b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class U>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator + (const polynomial<T>& a, const U& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result += b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class U>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator - (const polynomial<T>& a, const U& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result -= b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T, class U>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator * (const polynomial<T>& a, const U& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result *= b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class U, class T>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator + (const U& a, const polynomial<T>& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(b);
							 | 
						||
| 
								 | 
							
								   result += a;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class U, class T>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator - (const U& a, const polynomial<T>& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								   result -= b;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class U, class T>
							 | 
						||
| 
								 | 
							
								inline polynomial<T> operator * (const U& a, const polynomial<T>& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   polynomial<T> result(b);
							 | 
						||
| 
								 | 
							
								   result *= a;
							 | 
						||
| 
								 | 
							
								   return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								bool operator == (const polynomial<T> &a, const polynomial<T> &b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return a.data() == b.data();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T, typename U>
							 | 
						||
| 
								 | 
							
								polynomial<T> operator >> (const polynomial<T>& a, const U& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								    result >>= b;
							 | 
						||
| 
								 | 
							
								    return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T, typename U>
							 | 
						||
| 
								 | 
							
								polynomial<T> operator << (const polynomial<T>& a, const U& b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    polynomial<T> result(a);
							 | 
						||
| 
								 | 
							
								    result <<= b;
							 | 
						||
| 
								 | 
							
								    return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Unary minus (negate).
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								polynomial<T> operator - (polynomial<T> a)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    std::transform(a.data().begin(), a.data().end(), a.data().begin(), std::negate<T>());
							 | 
						||
| 
								 | 
							
								    return a;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								bool odd(polynomial<T> const &a)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return a.size() > 0 && a[0] != static_cast<T>(0);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								bool even(polynomial<T> const &a)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return !odd(a);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								polynomial<T> pow(polynomial<T> base, int exp)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    if (exp < 0)
							 | 
						||
| 
								 | 
							
								        return policies::raise_domain_error(
							 | 
						||
| 
								 | 
							
								                "boost::math::tools::pow<%1%>",
							 | 
						||
| 
								 | 
							
								                "Negative powers are not supported for polynomials.",
							 | 
						||
| 
								 | 
							
								                base, policies::policy<>());
							 | 
						||
| 
								 | 
							
								        // if the policy is ignore_error or errno_on_error, raise_domain_error
							 | 
						||
| 
								 | 
							
								        // will return std::numeric_limits<polynomial<T>>::quiet_NaN(), which
							 | 
						||
| 
								 | 
							
								        // defaults to polynomial<T>(), which is the zero polynomial
							 | 
						||
| 
								 | 
							
								    polynomial<T> result(T(1));
							 | 
						||
| 
								 | 
							
								    if (exp & 1)
							 | 
						||
| 
								 | 
							
								        result = base;
							 | 
						||
| 
								 | 
							
								    /* "Exponentiation by squaring" */
							 | 
						||
| 
								 | 
							
								    while (exp >>= 1)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        base *= base;
							 | 
						||
| 
								 | 
							
								        if (exp & 1)
							 | 
						||
| 
								 | 
							
								            result *= base;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class charT, class traits, class T>
							 | 
						||
| 
								 | 
							
								inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   os << "{ ";
							 | 
						||
| 
								 | 
							
								   for(unsigned i = 0; i < poly.size(); ++i)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if(i) os << ", ";
							 | 
						||
| 
								 | 
							
								      os << poly[i];
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   os << " }";
							 | 
						||
| 
								 | 
							
								   return os;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace tools
							 | 
						||
| 
								 | 
							
								} // namespace math
							 | 
						||
| 
								 | 
							
								} // namespace boost
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 |