301 lines
10 KiB
Plaintext
301 lines
10 KiB
Plaintext
|
// Copyright John Maddock 2006.
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_STATS_EXTREME_VALUE_HPP
|
||
|
#define BOOST_STATS_EXTREME_VALUE_HPP
|
||
|
|
||
|
#include <boost/math/distributions/fwd.hpp>
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
#include <boost/math/special_functions/log1p.hpp>
|
||
|
#include <boost/math/special_functions/expm1.hpp>
|
||
|
#include <boost/math/distributions/complement.hpp>
|
||
|
#include <boost/math/distributions/detail/common_error_handling.hpp>
|
||
|
#include <boost/config/no_tr1/cmath.hpp>
|
||
|
|
||
|
//
|
||
|
// This is the maximum extreme value distribution, see
|
||
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm
|
||
|
// and http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
||
|
// Also known as a Fisher-Tippett distribution, a log-Weibull
|
||
|
// distribution or a Gumbel distribution.
|
||
|
|
||
|
#include <utility>
|
||
|
|
||
|
#ifdef BOOST_MSVC
|
||
|
# pragma warning(push)
|
||
|
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
|
||
|
#endif
|
||
|
|
||
|
namespace boost{ namespace math{
|
||
|
|
||
|
namespace detail{
|
||
|
//
|
||
|
// Error check:
|
||
|
//
|
||
|
template <class RealType, class Policy>
|
||
|
inline bool verify_scale_b(const char* function, RealType b, RealType* presult, const Policy& pol)
|
||
|
{
|
||
|
if((b <= 0) || !(boost::math::isfinite)(b))
|
||
|
{
|
||
|
*presult = policies::raise_domain_error<RealType>(
|
||
|
function,
|
||
|
"The scale parameter \"b\" must be finite and > 0, but was: %1%.", b, pol);
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
template <class RealType = double, class Policy = policies::policy<> >
|
||
|
class extreme_value_distribution
|
||
|
{
|
||
|
public:
|
||
|
typedef RealType value_type;
|
||
|
typedef Policy policy_type;
|
||
|
|
||
|
extreme_value_distribution(RealType a = 0, RealType b = 1)
|
||
|
: m_a(a), m_b(b)
|
||
|
{
|
||
|
RealType err;
|
||
|
detail::verify_scale_b("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", b, &err, Policy());
|
||
|
detail::check_finite("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", a, &err, Policy());
|
||
|
} // extreme_value_distribution
|
||
|
|
||
|
RealType location()const { return m_a; }
|
||
|
RealType scale()const { return m_b; }
|
||
|
|
||
|
private:
|
||
|
RealType m_a, m_b;
|
||
|
};
|
||
|
|
||
|
typedef extreme_value_distribution<double> extreme_value;
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline const std::pair<RealType, RealType> range(const extreme_value_distribution<RealType, Policy>& /*dist*/)
|
||
|
{ // Range of permissible values for random variable x.
|
||
|
using boost::math::tools::max_value;
|
||
|
return std::pair<RealType, RealType>(
|
||
|
std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(),
|
||
|
std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline const std::pair<RealType, RealType> support(const extreme_value_distribution<RealType, Policy>& /*dist*/)
|
||
|
{ // Range of supported values for random variable x.
|
||
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
||
|
using boost::math::tools::max_value;
|
||
|
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType pdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions
|
||
|
|
||
|
static const char* function = "boost::math::pdf(const extreme_value_distribution<%1%>&, %1%)";
|
||
|
|
||
|
RealType a = dist.location();
|
||
|
RealType b = dist.scale();
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b(function, b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_finite(function, a, &result, Policy()))
|
||
|
return result;
|
||
|
if((boost::math::isinf)(x))
|
||
|
return 0.0f;
|
||
|
if(0 == detail::check_x(function, x, &result, Policy()))
|
||
|
return result;
|
||
|
RealType e = (a - x) / b;
|
||
|
if(e < tools::log_max_value<RealType>())
|
||
|
result = exp(e) * exp(-exp(e)) / b;
|
||
|
// else.... result *must* be zero since exp(e) is infinite...
|
||
|
return result;
|
||
|
} // pdf
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType cdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions
|
||
|
|
||
|
static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)";
|
||
|
|
||
|
if((boost::math::isinf)(x))
|
||
|
return x < 0 ? 0.0f : 1.0f;
|
||
|
RealType a = dist.location();
|
||
|
RealType b = dist.scale();
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b(function, b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_finite(function, a, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_finite(function, a, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_x("boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)", x, &result, Policy()))
|
||
|
return result;
|
||
|
|
||
|
result = exp(-exp((a-x)/b));
|
||
|
|
||
|
return result;
|
||
|
} // cdf
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
RealType quantile(const extreme_value_distribution<RealType, Policy>& dist, const RealType& p)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions
|
||
|
|
||
|
static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)";
|
||
|
|
||
|
RealType a = dist.location();
|
||
|
RealType b = dist.scale();
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b(function, b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_finite(function, a, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_probability(function, p, &result, Policy()))
|
||
|
return result;
|
||
|
|
||
|
if(p == 0)
|
||
|
return -policies::raise_overflow_error<RealType>(function, 0, Policy());
|
||
|
if(p == 1)
|
||
|
return policies::raise_overflow_error<RealType>(function, 0, Policy());
|
||
|
|
||
|
result = a - log(-log(p)) * b;
|
||
|
|
||
|
return result;
|
||
|
} // quantile
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType cdf(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions
|
||
|
|
||
|
static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)";
|
||
|
|
||
|
if((boost::math::isinf)(c.param))
|
||
|
return c.param < 0 ? 1.0f : 0.0f;
|
||
|
RealType a = c.dist.location();
|
||
|
RealType b = c.dist.scale();
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b(function, b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_finite(function, a, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_x(function, c.param, &result, Policy()))
|
||
|
return result;
|
||
|
|
||
|
result = -boost::math::expm1(-exp((a-c.param)/b), Policy());
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
RealType quantile(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions
|
||
|
|
||
|
static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)";
|
||
|
|
||
|
RealType a = c.dist.location();
|
||
|
RealType b = c.dist.scale();
|
||
|
RealType q = c.param;
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b(function, b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_finite(function, a, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_probability(function, q, &result, Policy()))
|
||
|
return result;
|
||
|
|
||
|
if(q == 0)
|
||
|
return policies::raise_overflow_error<RealType>(function, 0, Policy());
|
||
|
if(q == 1)
|
||
|
return -policies::raise_overflow_error<RealType>(function, 0, Policy());
|
||
|
|
||
|
result = a - log(-boost::math::log1p(-q, Policy())) * b;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType mean(const extreme_value_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
RealType a = dist.location();
|
||
|
RealType b = dist.scale();
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b("boost::math::mean(const extreme_value_distribution<%1%>&)", b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_scale("boost::math::mean(const extreme_value_distribution<%1%>&)", a, &result, Policy()))
|
||
|
return result;
|
||
|
return a + constants::euler<RealType>() * b;
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType standard_deviation(const extreme_value_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING // for ADL of std functions.
|
||
|
|
||
|
RealType b = dist.scale();
|
||
|
RealType result = 0;
|
||
|
if(0 == detail::verify_scale_b("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", b, &result, Policy()))
|
||
|
return result;
|
||
|
if(0 == detail::check_scale("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", dist.location(), &result, Policy()))
|
||
|
return result;
|
||
|
return constants::pi<RealType>() * b / sqrt(static_cast<RealType>(6));
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType mode(const extreme_value_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
return dist.location();
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType median(const extreme_value_distribution<RealType, Policy>& dist)
|
||
|
{
|
||
|
using constants::ln_ln_two;
|
||
|
return dist.location() - dist.scale() * ln_ln_two<RealType>();
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType skewness(const extreme_value_distribution<RealType, Policy>& /*dist*/)
|
||
|
{
|
||
|
//
|
||
|
// This is 12 * sqrt(6) * zeta(3) / pi^3:
|
||
|
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
||
|
//
|
||
|
return static_cast<RealType>(1.1395470994046486574927930193898461120875997958366L);
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType kurtosis(const extreme_value_distribution<RealType, Policy>& /*dist*/)
|
||
|
{
|
||
|
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
||
|
return RealType(27) / 5;
|
||
|
}
|
||
|
|
||
|
template <class RealType, class Policy>
|
||
|
inline RealType kurtosis_excess(const extreme_value_distribution<RealType, Policy>& /*dist*/)
|
||
|
{
|
||
|
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
||
|
return RealType(12) / 5;
|
||
|
}
|
||
|
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace boost
|
||
|
|
||
|
#ifdef BOOST_MSVC
|
||
|
# pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
// This include must be at the end, *after* the accessors
|
||
|
// for this distribution have been defined, in order to
|
||
|
// keep compilers that support two-phase lookup happy.
|
||
|
#include <boost/math/distributions/detail/derived_accessors.hpp>
|
||
|
|
||
|
#endif // BOOST_STATS_EXTREME_VALUE_HPP
|