231 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			231 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_Y0_HPP | ||
|  | #define BOOST_MATH_BESSEL_Y0_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4702) // Unreachable code (release mode only warning) | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/detail/bessel_j0.hpp> | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/assert.hpp> | ||
|  | 
 | ||
|  | // Bessel function of the second kind of order zero | ||
|  | // x <= 8, minimax rational approximations on root-bracketing intervals | ||
|  | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 | ||
|  | 
 | ||
|  | namespace boost { namespace math { namespace detail{ | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_y0(T x, const Policy&); | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | struct bessel_y0_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          do_init(); | ||
|  |       } | ||
|  |       static void do_init() | ||
|  |       { | ||
|  |          bessel_y0(T(1), Policy()); | ||
|  |       } | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | const typename bessel_y0_initializer<T, Policy>::init bessel_y0_initializer<T, Policy>::initializer; | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_y0(T x, const Policy& pol) | ||
|  | { | ||
|  |     bessel_y0_initializer<T, Policy>::force_instantiate(); | ||
|  | 
 | ||
|  |     static const T P1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0723538782003176831e+11)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.3716255451260504098e+09)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0422274357376619816e+08)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.1287548474401797963e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0102532948020907590e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8402381979244993524e+01)), | ||
|  |     }; | ||
|  |     static const T Q1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8873865738997033405e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1617187777290363573e+09)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5662956624278251596e+07)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3889393209447253406e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6475986689240190091e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T P2[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2213976967566192242e+13)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5107435206722644429e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3600098638603061642e+10)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9590439394619619534e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6905288611678631510e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4566865832663635920e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7427031242901594547e+01)), | ||
|  |     }; | ||
|  |     static const T Q2[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3386146580707264428e+14)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4266824419412347550e+12)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4015103849971240096e+10)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960202770986831075e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0669982352539552018e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.3030857612070288823e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T P3[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.0728726905150210443e+15)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.7016641869173237784e+14)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2829912364088687306e+11)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9363051266772083678e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1958827170518100757e+09)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0085539923498211426e+07)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1363534169313901632e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7439661319197499338e+01)), | ||
|  |     }; | ||
|  |     static const T Q3[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4563724628846457519e+17)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9272425569640309819e+15)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2598377924042897629e+13)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6926121104209825246e+10)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4727219475672302327e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3924739209768057030e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.7903362168128450017e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T PC[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)), | ||
|  |     }; | ||
|  |     static const T QC[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T PS[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)), | ||
|  |     }; | ||
|  |     static const T QS[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |     }; | ||
|  |     static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.9357696627916752158e-01)), | ||
|  |                    x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9576784193148578684e+00)), | ||
|  |                    x3  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0860510603017726976e+00)), | ||
|  |                    x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.280e+02)), | ||
|  |                    x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9519662791675215849e-03)), | ||
|  |                    x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0130e+03)), | ||
|  |                    x22 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4716931485786837568e-04)), | ||
|  |                    x31 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8140e+03)), | ||
|  |                    x32 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1356030177269762362e-04)) | ||
|  |     ; | ||
|  |     T value, factor, r, rc, rs; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  |     using namespace boost::math::constants; | ||
|  | 
 | ||
|  |     static const char* function = "boost::math::bessel_y0<%1%>(%1%,%1%)"; | ||
|  | 
 | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |        return policies::raise_domain_error<T>(function, | ||
|  |             "Got x = %1% but x must be non-negative, complex result not supported.", x, pol); | ||
|  |     } | ||
|  |     if (x == 0) | ||
|  |     { | ||
|  |        return -policies::raise_overflow_error<T>(function, 0, pol); | ||
|  |     } | ||
|  |     if (x <= 3)                       // x in (0, 3] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         T z = 2 * log(x/x1) * bessel_j0(x) / pi<T>(); | ||
|  |         r = evaluate_rational(P1, Q1, y); | ||
|  |         factor = (x + x1) * ((x - x11/256) - x12); | ||
|  |         value = z + factor * r; | ||
|  |     } | ||
|  |     else if (x <= 5.5f)                  // x in (3, 5.5] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         T z = 2 * log(x/x2) * bessel_j0(x) / pi<T>(); | ||
|  |         r = evaluate_rational(P2, Q2, y); | ||
|  |         factor = (x + x2) * ((x - x21/256) - x22); | ||
|  |         value = z + factor * r; | ||
|  |     } | ||
|  |     else if (x <= 8)                  // x in (5.5, 8] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         T z = 2 * log(x/x3) * bessel_j0(x) / pi<T>(); | ||
|  |         r = evaluate_rational(P3, Q3, y); | ||
|  |         factor = (x + x3) * ((x - x31/256) - x32); | ||
|  |         value = z + factor * r; | ||
|  |     } | ||
|  |     else                                // x in (8, \infty) | ||
|  |     { | ||
|  |         T y = 8 / x; | ||
|  |         T y2 = y * y; | ||
|  |         rc = evaluate_rational(PC, QC, y2); | ||
|  |         rs = evaluate_rational(PS, QS, y2); | ||
|  |         factor = constants::one_div_root_pi<T>() / sqrt(x); | ||
|  |         // | ||
|  |         // The following code is really just: | ||
|  |         // | ||
|  |         // T z = x - 0.25f * pi<T>(); | ||
|  |         // value = factor * (rc * sin(z) + y * rs * cos(z)); | ||
|  |         // | ||
|  |         // But using the sin/cos addition formulae and constant values for | ||
|  |         // sin/cos of PI/4 which then cancel part of the "factor" term as they're all | ||
|  |         // 1 / sqrt(2): | ||
|  |         // | ||
|  |         T sx = sin(x); | ||
|  |         T cx = cos(x); | ||
|  |         value = factor * (rc * (sx - cx) + y * rs * (cx + sx)); | ||
|  |     } | ||
|  | 
 | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_Y0_HPP | ||
|  | 
 |