969 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			969 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright John Maddock 2010, 2012. | ||
|  | //  Copyright Paul A. Bristow 2011, 2012. | ||
|  | 
 | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED | ||
|  | #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/trunc.hpp> | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ namespace constants{ namespace detail{ | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |    return ldexp(acos(T(0)), 1); | ||
|  | 
 | ||
|  |    /* | ||
|  |    // Although this code works well, it's usually more accurate to just call acos | ||
|  |    // and access the number types own representation of PI which is usually calculated | ||
|  |    // at slightly higher precision... | ||
|  | 
 | ||
|  |    T result; | ||
|  |    T a = 1; | ||
|  |    T b; | ||
|  |    T A(a); | ||
|  |    T B = 0.5f; | ||
|  |    T D = 0.25f; | ||
|  | 
 | ||
|  |    T lim; | ||
|  |    lim = boost::math::tools::epsilon<T>(); | ||
|  | 
 | ||
|  |    unsigned k = 1; | ||
|  | 
 | ||
|  |    do | ||
|  |    { | ||
|  |       result = A + B; | ||
|  |       result = ldexp(result, -2); | ||
|  |       b = sqrt(B); | ||
|  |       a += b; | ||
|  |       a = ldexp(a, -1); | ||
|  |       A = a * a; | ||
|  |       B = A - result; | ||
|  |       B = ldexp(B, 1); | ||
|  |       result = A - B; | ||
|  |       bool neg = boost::math::sign(result) < 0; | ||
|  |       if(neg) | ||
|  |          result = -result; | ||
|  |       if(result <= lim) | ||
|  |          break; | ||
|  |       if(neg) | ||
|  |          result = -result; | ||
|  |       result = ldexp(result, k - 1); | ||
|  |       D -= result; | ||
|  |       ++k; | ||
|  |       lim = ldexp(lim, 1); | ||
|  |    } | ||
|  |    while(true); | ||
|  | 
 | ||
|  |    result = B / D; | ||
|  |    return result; | ||
|  |    */ | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return 2 * pi<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> // 2 / pi | ||
|  | template<int N> | ||
|  | inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return 2 / pi<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T>  // sqrt(2/pi) | ||
|  | template <int N> | ||
|  | inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >())); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return 1 / two_pi<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(pi<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return log(root_two_pi<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(log(static_cast<T>(4))); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    // | ||
|  |    // Although we can clearly calculate this from first principles, this hooks into | ||
|  |    // T's own notion of e, which hopefully will more accurate than one calculated to | ||
|  |    // a few epsilon: | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return exp(static_cast<T>(1)); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return static_cast<T>(1) / static_cast<T>(2); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int M> | ||
|  | inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<M>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    // | ||
|  |    // This is the method described in: | ||
|  |    // "Some New Algorithms for High-Precision Computation of Euler's Constant" | ||
|  |    // Richard P Brent and Edwin M McMillan. | ||
|  |    // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312. | ||
|  |    // See equation 17 with p = 2. | ||
|  |    // | ||
|  |    T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4; | ||
|  |    T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>(); | ||
|  |    T lnn = log(n); | ||
|  |    T term = 1; | ||
|  |    T N = -lnn; | ||
|  |    T D = 1; | ||
|  |    T Hk = 0; | ||
|  |    T one = 1; | ||
|  | 
 | ||
|  |    for(unsigned k = 1;; ++k) | ||
|  |    { | ||
|  |       term *= n * n; | ||
|  |       term /= k * k; | ||
|  |       Hk += one / k; | ||
|  |       N += term * (Hk - lnn); | ||
|  |       D += term; | ||
|  | 
 | ||
|  |       if(term < D * lim) | ||
|  |          break; | ||
|  |    } | ||
|  |    return N / D; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |   BOOST_MATH_STD_USING | ||
|  |   return euler<T, policies::policy<policies::digits2<N> > >() | ||
|  |      * euler<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |   BOOST_MATH_STD_USING | ||
|  |   return static_cast<T>(1) | ||
|  |      / euler<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(static_cast<T>(2)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(static_cast<T>(3)); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(static_cast<T>(2)) / 2; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    // | ||
|  |    // Although there are good ways to calculate this from scratch, this hooks into | ||
|  |    // T's own notion of log(2) which will hopefully be accurate to the full precision | ||
|  |    // of T: | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return log(static_cast<T>(2)); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return log(static_cast<T>(10)); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return log(log(static_cast<T>(2))); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(1) / static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(2) / static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(2) / static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(3) / static_cast<T>(4); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | //template <class T> | ||
|  | //template<int N> | ||
|  | //inline T constant_pow23_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | //{ | ||
|  | //   BOOST_MATH_STD_USING | ||
|  | //   return pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1.5)); | ||
|  | //} | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return exp(static_cast<T>(-0.5)); | ||
|  | } | ||
|  | 
 | ||
|  | // Pi | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >()  / static_cast<T>(2); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >()  / static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >()  / static_cast<T>(6); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    *      pi<T, policies::policy<policies::digits2<N> > >() ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    *      pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    / static_cast<T>(6); // | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    *      pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    *      pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3)); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(1) | ||
|  |    / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3)); | ||
|  | } | ||
|  | 
 | ||
|  | // Euler's e | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sqrt(e<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return log10(e<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return  static_cast<T>(1) / | ||
|  |      log10(e<T, policies::policy<policies::digits2<N> > >()); | ||
|  | } | ||
|  | 
 | ||
|  | // Trigonometric | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    / static_cast<T>(180) | ||
|  |    ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(180) | ||
|  |    / pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |    ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sin(static_cast<T>(1)) ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return cos(static_cast<T>(1)) ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return sinh(static_cast<T>(1)) ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return cosh(static_cast<T>(1)) ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; // | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    //return  log(phi<T, policies::policy<policies::digits2<N> > >()); // ??? | ||
|  |    return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ); | ||
|  | } | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(1) / | ||
|  |      log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ); | ||
|  | } | ||
|  | 
 | ||
|  | // Zeta | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |      return pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |      *  pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |      /static_cast<T>(6); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    // http://mathworld.wolfram.com/AperysConstant.html | ||
|  |    // http://en.wikipedia.org/wiki/Mathematical_constant | ||
|  | 
 | ||
|  |    // http://oeis.org/A002117/constant | ||
|  |    //T zeta3("1.20205690315959428539973816151144999076" | ||
|  |    // "4986292340498881792271555341838205786313" | ||
|  |    // "09018645587360933525814619915"); | ||
|  | 
 | ||
|  |   //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915"  A002117 | ||
|  |   // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00); | ||
|  |   //"1.2020569031595942 double | ||
|  |   // http://www.spaennare.se/SSPROG/ssnum.pdf  // section 11, Algorithm for Apery's constant zeta(3). | ||
|  |   // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50 | ||
|  | 
 | ||
|  |   // by Stefan Spannare  September 19, 2007 | ||
|  |   // zeta(3) = 1/64 * sum | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    T n_fact=static_cast<T>(1); // build n! for n = 0. | ||
|  |    T sum = static_cast<double>(77); // Start with n = 0 case. | ||
|  |    // for n = 0, (77/1) /64 = 1.203125 | ||
|  |    //double lim = std::numeric_limits<double>::epsilon(); | ||
|  |    T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>(); | ||
|  |    for(unsigned int n = 1; n < 40; ++n) | ||
|  |    { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits. | ||
|  |       //cout << "n = " << n << endl; | ||
|  |       n_fact *= n; // n! | ||
|  |       T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10 | ||
|  |       T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77 | ||
|  |       // int nn = (2 * n + 1); | ||
|  |       // T d = factorial(nn); // inline factorial. | ||
|  |       T d = 1; | ||
|  |       for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1) | ||
|  |       { | ||
|  |         d *= i; | ||
|  |       } | ||
|  |       T den = d * d * d * d * d; // [(2n+1)!]^5 | ||
|  |       //cout << "den = " << den << endl; | ||
|  |       T term = num/den; | ||
|  |       if (n % 2 != 0) | ||
|  |       { //term *= -1; | ||
|  |         sum -= term; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |         sum += term; | ||
|  |       } | ||
|  |       //cout << "term = " << term << endl; | ||
|  |       //cout << "sum/64  = " << sum/64 << endl; | ||
|  |       if(abs(term) < lim) | ||
|  |       { | ||
|  |          break; | ||
|  |       } | ||
|  |    } | ||
|  |    return sum / 64; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { // http://oeis.org/A006752/constant | ||
|  |   //T c("0.915965594177219015054603514932384110774" | ||
|  |  //"149374281672134266498119621763019776254769479356512926115106248574"); | ||
|  | 
 | ||
|  |   // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01); | ||
|  | 
 | ||
|  |    // This is equation (entry) 31 from | ||
|  |    // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm | ||
|  |    // See also http://www.mpfr.org/algorithms.pdf | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    T k_fact = 1; | ||
|  |    T tk_fact = 1; | ||
|  |    T sum = 1; | ||
|  |    T term; | ||
|  |    T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>(); | ||
|  | 
 | ||
|  |    for(unsigned k = 1;; ++k) | ||
|  |    { | ||
|  |       k_fact *= k; | ||
|  |       tk_fact *= (2 * k) * (2 * k - 1); | ||
|  |       term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1)); | ||
|  |       sum += term; | ||
|  |       if(term < lim) | ||
|  |       { | ||
|  |          break; | ||
|  |       } | ||
|  |    } | ||
|  |    return boost::math::constants::pi<T, boost::math::policies::policy<> >() | ||
|  |       * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >()) | ||
|  |        / 8 | ||
|  |       + 3 * sum / 8; | ||
|  | } | ||
|  | 
 | ||
|  | namespace khinchin_detail{ | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T zeta_polynomial_series(T s, T sc, int digits) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    // | ||
|  |    // This is algorithm 3 from: | ||
|  |    // | ||
|  |    // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein, | ||
|  |    // Canadian Mathematical Society, Conference Proceedings, 2000. | ||
|  |    // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    int n = (digits * 19) / 53; | ||
|  |    T sum = 0; | ||
|  |    T two_n = ldexp(T(1), n); | ||
|  |    int ej_sign = 1; | ||
|  |    for(int j = 0; j < n; ++j) | ||
|  |    { | ||
|  |       sum += ej_sign * -two_n / pow(T(j + 1), s); | ||
|  |       ej_sign = -ej_sign; | ||
|  |    } | ||
|  |    T ej_sum = 1; | ||
|  |    T ej_term = 1; | ||
|  |    for(int j = n; j <= 2 * n - 1; ++j) | ||
|  |    { | ||
|  |       sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s); | ||
|  |       ej_sign = -ej_sign; | ||
|  |       ej_term *= 2 * n - j; | ||
|  |       ej_term /= j - n + 1; | ||
|  |       ej_sum += ej_term; | ||
|  |    } | ||
|  |    return -sum / (two_n * (1 - pow(T(2), sc))); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T khinchin(int digits) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    T sum = 0; | ||
|  |    T term; | ||
|  |    T lim = ldexp(T(1), 1-digits); | ||
|  |    T factor = 0; | ||
|  |    unsigned last_k = 1; | ||
|  |    T num = 1; | ||
|  |    for(unsigned n = 1;; ++n) | ||
|  |    { | ||
|  |       for(unsigned k = last_k; k <= 2 * n - 1; ++k) | ||
|  |       { | ||
|  |          factor += num / k; | ||
|  |          num = -num; | ||
|  |       } | ||
|  |       last_k = 2 * n; | ||
|  |       term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n; | ||
|  |       sum += term; | ||
|  |       if(term < lim) | ||
|  |          break; | ||
|  |    } | ||
|  |    return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >()); | ||
|  | } | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  |    int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>(); | ||
|  |    return khinchin_detail::khinchin<T>(n); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { // from e_float constants.cpp | ||
|  |   // Mathematica: N[12 Sqrt[6]  Zeta[3]/Pi^3, 1101] | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >() | ||
|  |     / pi_cubed<T, policies::policy<policies::digits2<N> > >() ); | ||
|  | 
 | ||
|  | //T ev( | ||
|  | //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150" | ||
|  | //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680" | ||
|  | //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280" | ||
|  | //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594" | ||
|  | //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965" | ||
|  | //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984" | ||
|  | //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970" | ||
|  | //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809" | ||
|  | //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964" | ||
|  | //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377" | ||
|  | //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315"); | ||
|  | 
 | ||
|  |   return ev; | ||
|  | } | ||
|  | 
 | ||
|  | namespace detail{ | ||
|  | // | ||
|  | // Calculation of the Glaisher constant depends upon calculating the | ||
|  | // derivative of the zeta function at 2, we can then use the relation: | ||
|  | // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)] | ||
|  | // To get the constant A. | ||
|  | // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html. | ||
|  | // | ||
|  | // The derivative of the zeta function is computed by direct differentiation | ||
|  | // of the relation: | ||
|  | // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s  } | ||
|  | // Which gives us 2 slowly converging but alternating sums to compute, | ||
|  | // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series", | ||
|  | // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999). | ||
|  | // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf | ||
|  | // | ||
|  | template <class T> | ||
|  | T zeta_series_derivative_2(unsigned digits) | ||
|  | { | ||
|  |    // Derivative of the series part, evaluated at 2: | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    int n = digits * 301 * 13 / 10000; | ||
|  |    boost::math::itrunc((std::numeric_limits<T>::digits10 + 1) * 1.3); | ||
|  |    T d = pow(3 + sqrt(T(8)), n); | ||
|  |    d = (d + 1 / d) / 2; | ||
|  |    T b = -1; | ||
|  |    T c = -d; | ||
|  |    T s = 0; | ||
|  |    for(int k = 0; k < n; ++k) | ||
|  |    { | ||
|  |       T a = -log(T(k+1)) / ((k+1) * (k+1)); | ||
|  |       c = b - c; | ||
|  |       s = s + c * a; | ||
|  |       b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); | ||
|  |    } | ||
|  |    return s / d; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T zeta_series_2(unsigned digits) | ||
|  | { | ||
|  |    // Series part of zeta at 2: | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    int n = digits * 301 * 13 / 10000; | ||
|  |    T d = pow(3 + sqrt(T(8)), n); | ||
|  |    d = (d + 1 / d) / 2; | ||
|  |    T b = -1; | ||
|  |    T c = -d; | ||
|  |    T s = 0; | ||
|  |    for(int k = 0; k < n; ++k) | ||
|  |    { | ||
|  |       T a = T(1) / ((k + 1) * (k + 1)); | ||
|  |       c = b - c; | ||
|  |       s = s + c * a; | ||
|  |       b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); | ||
|  |    } | ||
|  |    return s / d; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline T zeta_series_lead_2() | ||
|  | { | ||
|  |    // lead part at 2: | ||
|  |    return 2; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline T zeta_series_derivative_lead_2() | ||
|  | { | ||
|  |    // derivative of lead part at 2: | ||
|  |    return -2 * boost::math::constants::ln_two<T>(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline T zeta_derivative_2(unsigned n) | ||
|  | { | ||
|  |    // zeta derivative at 2: | ||
|  |    return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>() | ||
|  |       + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n); | ||
|  | } | ||
|  | 
 | ||
|  | }  // namespace detail | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { | ||
|  | 
 | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    typedef policies::policy<policies::digits2<N> > forwarding_policy; | ||
|  |    int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>(); | ||
|  |    T v = detail::zeta_derivative_2<T>(n); | ||
|  |    v *= 6; | ||
|  |    v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>(); | ||
|  |    v -= boost::math::constants::euler<T, forwarding_policy>(); | ||
|  |    v -= log(2 * boost::math::constants::pi<T, forwarding_policy>()); | ||
|  |    v /= -12; | ||
|  |    return exp(v); | ||
|  | 
 | ||
|  |  /* | ||
|  |    // from http://mpmath.googlecode.com/svn/data/glaisher.txt | ||
|  |      // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1)) | ||
|  |      // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12) | ||
|  |   // with Euler-Maclaurin summation for zeta'(2). | ||
|  |   T g( | ||
|  |   "1.282427129100622636875342568869791727767688927325001192063740021740406308858826" | ||
|  |   "46112973649195820237439420646120399000748933157791362775280404159072573861727522" | ||
|  |   "14334327143439787335067915257366856907876561146686449997784962754518174312394652" | ||
|  |   "76128213808180219264516851546143919901083573730703504903888123418813674978133050" | ||
|  |   "93770833682222494115874837348064399978830070125567001286994157705432053927585405" | ||
|  |   "81731588155481762970384743250467775147374600031616023046613296342991558095879293" | ||
|  |   "36343887288701988953460725233184702489001091776941712153569193674967261270398013" | ||
|  |   "52652668868978218897401729375840750167472114895288815996668743164513890306962645" | ||
|  |   "59870469543740253099606800842447417554061490189444139386196089129682173528798629" | ||
|  |   "88434220366989900606980888785849587494085307347117090132667567503310523405221054" | ||
|  |   "14176776156308191919997185237047761312315374135304725819814797451761027540834943" | ||
|  |   "14384965234139453373065832325673954957601692256427736926358821692159870775858274" | ||
|  |   "69575162841550648585890834128227556209547002918593263079373376942077522290940187"); | ||
|  | 
 | ||
|  |   return g; | ||
|  |   */ | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | {  // From e_float | ||
|  |   // 1100 digits of the Rayleigh distribution skewness | ||
|  |   // Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100] | ||
|  | 
 | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |       * pi_minus_three<T, policies::policy<policies::digits2<N> > >() | ||
|  |       / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2)) | ||
|  |       ); | ||
|  |  //   6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264, | ||
|  | 
 | ||
|  |   //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067" | ||
|  |   //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322" | ||
|  |   //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968" | ||
|  |   //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671" | ||
|  |   //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553" | ||
|  |   //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288" | ||
|  |   //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957" | ||
|  |   //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791" | ||
|  |   //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523" | ||
|  |   //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251" | ||
|  |   //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848");  ; | ||
|  |   return rs; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) | ||
|  |     // Might provide and calculate this using pi_minus_four. | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |         * pi<T, policies::policy<policies::digits2<N> > >()) | ||
|  |    - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) ) | ||
|  |    / | ||
|  |    ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)) | ||
|  |    * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))) | ||
|  |    ); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | template<int N> | ||
|  | inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>)) | ||
|  | { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) | ||
|  |   // Might provide and calculate this using pi_minus_four. | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >() | ||
|  |         * pi<T, policies::policy<policies::digits2<N> > >()) | ||
|  |    - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) ) | ||
|  |    / | ||
|  |    ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)) | ||
|  |    * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))) | ||
|  |    ); | ||
|  | } | ||
|  | 
 | ||
|  | }}}} // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |