269 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			269 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | /* Reed-Solomon decoder | ||
|  |  * Copyright 2002 Phil Karn, KA9Q | ||
|  |  * May be used under the terms of the GNU General Public License (GPL) | ||
|  |  * Modified by Steve Franke, K9AN, for use in a soft-symbol RS decoder | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifdef DEBUG | ||
|  | #include <stdio.h> | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <stdlib.h> | ||
|  | #include <string.h> | ||
|  | 
 | ||
|  | #define	min(a,b)	((a) < (b) ? (a) : (b)) | ||
|  | 
 | ||
|  | #ifdef FIXED | ||
|  | #include "fixed.h" | ||
|  | #elif defined(BIGSYM) | ||
|  | #include "int.h" | ||
|  | #else | ||
|  | #include "char.h" | ||
|  | #endif | ||
|  | 
 | ||
|  | int DECODE_RS( | ||
|  | #ifndef FIXED | ||
|  |               void *p, | ||
|  | #endif | ||
|  |               DTYPE *data, int *eras_pos, int no_eras, int calc_syn){ | ||
|  |      | ||
|  | #ifndef FIXED | ||
|  |     struct rs *rs = (struct rs *)p; | ||
|  | #endif | ||
|  |     int deg_lambda, el, deg_omega; | ||
|  |     int i, j, r,k; | ||
|  |     DTYPE u,q,tmp,num1,num2,den,discr_r; | ||
|  |     DTYPE lambda[NROOTS+1];	// Err+Eras Locator poly | ||
|  |     static DTYPE s[51];					 // and syndrome poly | ||
|  |     DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1]; | ||
|  |     DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS]; | ||
|  |     int syn_error, count; | ||
|  |      | ||
|  |     if( calc_syn ) { | ||
|  |         /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ | ||
|  |         for(i=0;i<NROOTS;i++) | ||
|  |             s[i] = data[0]; | ||
|  |          | ||
|  |         for(j=1;j<NN;j++){ | ||
|  |             for(i=0;i<NROOTS;i++){ | ||
|  |                 if(s[i] == 0){ | ||
|  |                     s[i] = data[j]; | ||
|  |                 } else { | ||
|  |                     s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)]; | ||
|  |                 } | ||
|  |             } | ||
|  |         } | ||
|  |          | ||
|  |         /* Convert syndromes to index form, checking for nonzero condition */ | ||
|  |         syn_error = 0; | ||
|  |         for(i=0;i<NROOTS;i++){ | ||
|  |             syn_error |= s[i]; | ||
|  |             s[i] = INDEX_OF[s[i]]; | ||
|  |         } | ||
|  |          | ||
|  |          | ||
|  |         if (!syn_error) { | ||
|  |             /* if syndrome is zero, data[] is a codeword and there are no | ||
|  |              * errors to correct. So return data[] unmodified | ||
|  |              */ | ||
|  |             count = 0; | ||
|  |             goto finish; | ||
|  |         } | ||
|  |          | ||
|  |     } | ||
|  |      | ||
|  |     memset(&lambda[1],0,NROOTS*sizeof(lambda[0])); | ||
|  |     lambda[0] = 1; | ||
|  |      | ||
|  |     if (no_eras > 0) { | ||
|  |         /* Init lambda to be the erasure locator polynomial */ | ||
|  |         lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))]; | ||
|  |         for (i = 1; i < no_eras; i++) { | ||
|  |             u = MODNN(PRIM*(NN-1-eras_pos[i])); | ||
|  |             for (j = i+1; j > 0; j--) { | ||
|  |                 tmp = INDEX_OF[lambda[j - 1]]; | ||
|  |                 if(tmp != A0) | ||
|  |                     lambda[j] ^= ALPHA_TO[MODNN(u + tmp)]; | ||
|  |             } | ||
|  |         } | ||
|  |          | ||
|  | #if DEBUG >= 1 | ||
|  |         /* Test code that verifies the erasure locator polynomial just constructed | ||
|  |          Needed only for decoder debugging. */ | ||
|  |          | ||
|  |         /* find roots of the erasure location polynomial */ | ||
|  |         for(i=1;i<=no_eras;i++) | ||
|  |             reg[i] = INDEX_OF[lambda[i]]; | ||
|  |          | ||
|  |         count = 0; | ||
|  |         for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { | ||
|  |             q = 1; | ||
|  |             for (j = 1; j <= no_eras; j++) | ||
|  |                 if (reg[j] != A0) { | ||
|  |                     reg[j] = MODNN(reg[j] + j); | ||
|  |                     q ^= ALPHA_TO[reg[j]]; | ||
|  |                 } | ||
|  |             if (q != 0) | ||
|  |                 continue; | ||
|  |             /* store root and error location number indices */ | ||
|  |             root[count] = i; | ||
|  |             loc[count] = k; | ||
|  |             count++; | ||
|  |         } | ||
|  |         if (count != no_eras) { | ||
|  |             printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras); | ||
|  |             count = -1; | ||
|  |             goto finish; | ||
|  |         } | ||
|  | #if DEBUG >= 2 | ||
|  |         printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); | ||
|  |         for (i = 0; i < count; i++) | ||
|  |             printf("%d ", loc[i]); | ||
|  |         printf("\n"); | ||
|  | #endif | ||
|  | #endif | ||
|  |     } | ||
|  |     for(i=0;i<NROOTS+1;i++) | ||
|  |         b[i] = INDEX_OF[lambda[i]]; | ||
|  |      | ||
|  |     /* | ||
|  |      * Begin Berlekamp-Massey algorithm to determine error+erasure | ||
|  |      * locator polynomial | ||
|  |      */ | ||
|  |     r = no_eras; | ||
|  |     el = no_eras; | ||
|  |     while (++r <= NROOTS) {	/* r is the step number */ | ||
|  |         /* Compute discrepancy at the r-th step in poly-form */ | ||
|  |         discr_r = 0; | ||
|  |         for (i = 0; i < r; i++){ | ||
|  |             if ((lambda[i] != 0) && (s[r-i-1] != A0)) { | ||
|  |                 discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])]; | ||
|  |             } | ||
|  |         } | ||
|  |         discr_r = INDEX_OF[discr_r];	/* Index form */ | ||
|  |         if (discr_r == A0) { | ||
|  |             /* 2 lines below: B(x) <-- x*B(x) */ | ||
|  |             memmove(&b[1],b,NROOTS*sizeof(b[0])); | ||
|  |             b[0] = A0; | ||
|  |         } else { | ||
|  |             /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ | ||
|  |             t[0] = lambda[0]; | ||
|  |             for (i = 0 ; i < NROOTS; i++) { | ||
|  |                 if(b[i] != A0) | ||
|  |                     t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])]; | ||
|  |                 else | ||
|  |                     t[i+1] = lambda[i+1]; | ||
|  |             } | ||
|  |             if (2 * el <= r + no_eras - 1) { | ||
|  |                 el = r + no_eras - el; | ||
|  |                 /* | ||
|  |                  * 2 lines below: B(x) <-- inv(discr_r) * | ||
|  |                  * lambda(x) | ||
|  |                  */ | ||
|  |                 for (i = 0; i <= NROOTS; i++) | ||
|  |                     b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN); | ||
|  |             } else { | ||
|  |                 /* 2 lines below: B(x) <-- x*B(x) */ | ||
|  |                 memmove(&b[1],b,NROOTS*sizeof(b[0])); | ||
|  |                 b[0] = A0; | ||
|  |             } | ||
|  |             memcpy(lambda,t,(NROOTS+1)*sizeof(t[0])); | ||
|  |         } | ||
|  |     } | ||
|  |      | ||
|  |     /* Convert lambda to index form and compute deg(lambda(x)) */ | ||
|  |     deg_lambda = 0; | ||
|  |     for(i=0;i<NROOTS+1;i++){ | ||
|  |         lambda[i] = INDEX_OF[lambda[i]]; | ||
|  |         if(lambda[i] != A0) | ||
|  |             deg_lambda = i; | ||
|  |     } | ||
|  |     /* Find roots of the error+erasure locator polynomial by Chien search */ | ||
|  |     memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0])); | ||
|  |     count = 0;		/* Number of roots of lambda(x) */ | ||
|  |     for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { | ||
|  |         q = 1; /* lambda[0] is always 0 */ | ||
|  |         for (j = deg_lambda; j > 0; j--){ | ||
|  |             if (reg[j] != A0) { | ||
|  |                 reg[j] = MODNN(reg[j] + j); | ||
|  |                 q ^= ALPHA_TO[reg[j]]; | ||
|  |             } | ||
|  |         } | ||
|  |         if (q != 0) | ||
|  |             continue; /* Not a root */ | ||
|  |         /* store root (index-form) and error location number */ | ||
|  | #if DEBUG>=2 | ||
|  |         printf("count %d root %d loc %d\n",count,i,k); | ||
|  | #endif | ||
|  |         root[count] = i; | ||
|  |         loc[count] = k; | ||
|  |         /* If we've already found max possible roots, | ||
|  |          * abort the search to save time | ||
|  |          */ | ||
|  |         if(++count == deg_lambda) | ||
|  |             break; | ||
|  |     } | ||
|  |     if (deg_lambda != count) { | ||
|  |         /* | ||
|  |          * deg(lambda) unequal to number of roots => uncorrectable | ||
|  |          * error detected | ||
|  |          */ | ||
|  |         count = -1; | ||
|  |         goto finish; | ||
|  |     } | ||
|  |     /* | ||
|  |      * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | ||
|  |      * x**NROOTS). in index form. Also find deg(omega). | ||
|  |      */ | ||
|  |     deg_omega = 0; | ||
|  |     for (i = 0; i < NROOTS;i++){ | ||
|  |         tmp = 0; | ||
|  |         j = (deg_lambda < i) ? deg_lambda : i; | ||
|  |         for(;j >= 0; j--){ | ||
|  |             if ((s[i - j] != A0) && (lambda[j] != A0)) | ||
|  |                 tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])]; | ||
|  |         } | ||
|  |         if(tmp != 0) | ||
|  |             deg_omega = i; | ||
|  |         omega[i] = INDEX_OF[tmp]; | ||
|  |     } | ||
|  |     omega[NROOTS] = A0; | ||
|  |      | ||
|  |     /* | ||
|  |      * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | ||
|  |      * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form | ||
|  |      */ | ||
|  |     for (j = count-1; j >=0; j--) { | ||
|  |         num1 = 0; | ||
|  |         for (i = deg_omega; i >= 0; i--) { | ||
|  |             if (omega[i] != A0) | ||
|  |                 num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])]; | ||
|  |         } | ||
|  |         num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)]; | ||
|  |         den = 0; | ||
|  |          | ||
|  |         /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ | ||
|  |         for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) { | ||
|  |             if(lambda[i+1] != A0) | ||
|  |                 den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])]; | ||
|  |         } | ||
|  |         if (den == 0) { | ||
|  | #if DEBUG >= 1 | ||
|  |             printf("\n ERROR: denominator = 0\n"); | ||
|  | #endif | ||
|  |             count = -1; | ||
|  |             goto finish; | ||
|  |         } | ||
|  |         /* Apply error to data */ | ||
|  |         if (num1 != 0) { | ||
|  |             data[loc[j]] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])]; | ||
|  |         } | ||
|  |     } | ||
|  | finish: | ||
|  |     if(eras_pos != NULL){ | ||
|  |         for(i=0;i<count;i++) | ||
|  |             eras_pos[i] = loc[i]; | ||
|  |     } | ||
|  |     return count; | ||
|  | } |