155 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			155 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_K1_HPP | ||
|  | #define BOOST_MATH_BESSEL_K1_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4702) // Unreachable code (release mode only warning) | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/assert.hpp> | ||
|  | 
 | ||
|  | // Modified Bessel function of the second kind of order one | ||
|  | // minimax rational approximations on intervals, see | ||
|  | // Russon and Blair, Chalk River Report AECL-3461, 1969 | ||
|  | 
 | ||
|  | namespace boost { namespace math { namespace detail{ | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_k1(T x, const Policy&); | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | struct bessel_k1_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          do_init(); | ||
|  |       } | ||
|  |       static void do_init() | ||
|  |       { | ||
|  |          bessel_k1(T(1), Policy()); | ||
|  |       } | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | const typename bessel_k1_initializer<T, Policy>::init bessel_k1_initializer<T, Policy>::initializer; | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_k1(T x, const Policy& pol) | ||
|  | { | ||
|  |     bessel_k1_initializer<T, Policy>::force_instantiate(); | ||
|  | 
 | ||
|  |     static const T P1[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1938920065420586101e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7733324035147015630e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1885382604084798576e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.9991373567429309922e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8127070456878442310e-01)) | ||
|  |     }; | ||
|  |     static const T Q1[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7264298672067697862e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.8143915754538725829e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T P2[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3531161492785421328e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4758069205414222471e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.5051623763436087023e+03)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.3103913335180275253e+01)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2795590826955002390e-01)) | ||
|  |     }; | ||
|  |     static const T Q2[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.7062322985570842656e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3117653211351080007e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0507151578787595807e+02)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T P3[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2196792496874548962e+00)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4137176114230414036e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4122953486801312910e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3319486433183221990e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.8590657697910288226e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4540675585544584407e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3123742209168871550e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1094256146537402173e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3182609918569941308e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.5584584631176030810e+00)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4257745859173138767e-02)) | ||
|  |     }; | ||
|  |     static const T Q3[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7710478032601086579e+00)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4552228452758912848e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.5951223655579051357e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.6929165726802648634e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9448440788918006154e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1181000487171943810e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2082692316002348638e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3031020088765390854e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.6001069306861518855e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     T value, factor, r, r1, r2; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  | 
 | ||
|  |     static const char* function = "boost::math::bessel_k1<%1%>(%1%,%1%)"; | ||
|  | 
 | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |        return policies::raise_domain_error<T>(function, | ||
|  |             "Got x = %1%, but argument x must be non-negative, complex number result not supported.", x, pol); | ||
|  |     } | ||
|  |     if (x == 0) | ||
|  |     { | ||
|  |        return policies::raise_overflow_error<T>(function, 0, pol); | ||
|  |     } | ||
|  |     if (x <= 1)                         // x in (0, 1] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         r1 = evaluate_polynomial(P1, y) /  evaluate_polynomial(Q1, y); | ||
|  |         r2 = evaluate_polynomial(P2, y) /  evaluate_polynomial(Q2, y); | ||
|  |         factor = log(x); | ||
|  |         value = (r1 + factor * r2) / x; | ||
|  |     } | ||
|  |     else                                // x in (1, \infty) | ||
|  |     { | ||
|  |         T y = 1 / x; | ||
|  |         r = evaluate_polynomial(P3, y) /  evaluate_polynomial(Q3, y); | ||
|  |         factor = exp(-x) / sqrt(x); | ||
|  |         value = factor * r; | ||
|  |     } | ||
|  | 
 | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_K1_HPP | ||
|  | 
 |