542 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			542 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //---------------------------------------------------------------------------// | ||
|  | // Copyright (c) 2015 Jakub Szuppe <j.szuppe@gmail.com> | ||
|  | // | ||
|  | // Distributed under the Boost Software License, Version 1.0 | ||
|  | // See accompanying file LICENSE_1_0.txt or copy at | ||
|  | // http://www.boost.org/LICENSE_1_0.txt | ||
|  | // | ||
|  | // See http://boostorg.github.com/compute for more information. | ||
|  | //---------------------------------------------------------------------------// | ||
|  | 
 | ||
|  | #ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP | ||
|  | #define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP | ||
|  | 
 | ||
|  | #include <algorithm> | ||
|  | #include <iterator> | ||
|  | 
 | ||
|  | #include <boost/compute/command_queue.hpp> | ||
|  | #include <boost/compute/functional.hpp> | ||
|  | #include <boost/compute/algorithm/inclusive_scan.hpp> | ||
|  | #include <boost/compute/container/vector.hpp> | ||
|  | #include <boost/compute/container/detail/scalar.hpp> | ||
|  | #include <boost/compute/detail/meta_kernel.hpp> | ||
|  | #include <boost/compute/detail/iterator_range_size.hpp> | ||
|  | #include <boost/compute/detail/read_write_single_value.hpp> | ||
|  | #include <boost/compute/type_traits.hpp> | ||
|  | #include <boost/compute/utility/program_cache.hpp> | ||
|  | 
 | ||
|  | namespace boost { | ||
|  | namespace compute { | ||
|  | namespace detail { | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// | ||
|  | /// Fills \p new_keys_first with unsigned integer keys generated from vector | ||
|  | /// of original keys \p keys_first. New keys can be distinguish by simple equality | ||
|  | /// predicate. | ||
|  | /// | ||
|  | /// \param keys_first iterator pointing to the first key | ||
|  | /// \param number_of_keys number of keys | ||
|  | /// \param predicate binary predicate for key comparison | ||
|  | /// \param new_keys_first iterator pointing to the new keys vector | ||
|  | /// \param preferred_work_group_size preferred work group size | ||
|  | /// \param queue command queue to perform the operation | ||
|  | /// | ||
|  | /// Binary function \p predicate must take two keys as arguments and | ||
|  | /// return true only if they are considered the same. | ||
|  | /// | ||
|  | /// The first new key equals zero and the last equals number of unique keys | ||
|  | /// minus one. | ||
|  | /// | ||
|  | /// No local memory usage. | ||
|  | template<class InputKeyIterator, class BinaryPredicate> | ||
|  | inline void generate_uint_keys(InputKeyIterator keys_first, | ||
|  |                                size_t number_of_keys, | ||
|  |                                BinaryPredicate predicate, | ||
|  |                                vector<uint_>::iterator new_keys_first, | ||
|  |                                size_t preferred_work_group_size, | ||
|  |                                command_queue &queue) | ||
|  | { | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<InputKeyIterator>::value_type key_type; | ||
|  | 
 | ||
|  |     detail::meta_kernel k("reduce_by_key_new_key_flags"); | ||
|  |     k.add_set_arg<const uint_>("count", uint_(number_of_keys)); | ||
|  | 
 | ||
|  |     k << | ||
|  |         k.decl<const uint_>("gid") << " = get_global_id(0);\n" << | ||
|  |         k.decl<uint_>("value") << " = 0;\n" << | ||
|  |         "if(gid >= count){\n    return;\n}\n" << | ||
|  |         "if(gid > 0){ \n" << | ||
|  |         k.decl<key_type>("key") << " = " << | ||
|  |                                 keys_first[k.var<const uint_>("gid")] << ";\n" << | ||
|  |         k.decl<key_type>("previous_key") << " = " << | ||
|  |                                 keys_first[k.var<const uint_>("gid - 1")] << ";\n" << | ||
|  |         "    value = " << predicate(k.var<key_type>("previous_key"), | ||
|  |                                     k.var<key_type>("key")) << | ||
|  |                           " ? 0 : 1;\n" << | ||
|  |         "}\n else {\n" << | ||
|  |         "    value = 0;\n" << | ||
|  |         "}\n" << | ||
|  |         new_keys_first[k.var<const uint_>("gid")] << " = value;\n"; | ||
|  | 
 | ||
|  |     const context &context = queue.get_context(); | ||
|  |     kernel kernel = k.compile(context); | ||
|  | 
 | ||
|  |     size_t work_group_size = preferred_work_group_size; | ||
|  |     size_t work_groups_no = static_cast<size_t>( | ||
|  |         std::ceil(float(number_of_keys) / work_group_size) | ||
|  |     ); | ||
|  | 
 | ||
|  |     queue.enqueue_1d_range_kernel(kernel, | ||
|  |                                   0, | ||
|  |                                   work_groups_no * work_group_size, | ||
|  |                                   work_group_size); | ||
|  | 
 | ||
|  |     inclusive_scan(new_keys_first, new_keys_first + number_of_keys, | ||
|  |                    new_keys_first, queue); | ||
|  | } | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// Calculate carry-out for each work group. | ||
|  | /// Carry-out is a pair of the last key processed by a work group and sum of all | ||
|  | /// values under this key in this work group. | ||
|  | template<class InputValueIterator, class OutputValueIterator, class BinaryFunction> | ||
|  | inline void carry_outs(vector<uint_>::iterator keys_first, | ||
|  |                        InputValueIterator values_first, | ||
|  |                        size_t count, | ||
|  |                        vector<uint_>::iterator carry_out_keys_first, | ||
|  |                        OutputValueIterator carry_out_values_first, | ||
|  |                        BinaryFunction function, | ||
|  |                        size_t work_group_size, | ||
|  |                        command_queue &queue) | ||
|  | { | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<OutputValueIterator>::value_type value_out_type; | ||
|  | 
 | ||
|  |     detail::meta_kernel k("reduce_by_key_with_scan_carry_outs"); | ||
|  |     k.add_set_arg<const uint_>("count", uint_(count)); | ||
|  |     size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys"); | ||
|  |     size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals"); | ||
|  | 
 | ||
|  |     k << | ||
|  |         k.decl<const uint_>("gid") << " = get_global_id(0);\n" << | ||
|  |         k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" << | ||
|  |         k.decl<const uint_>("lid") << " = get_local_id(0);\n" << | ||
|  |         k.decl<const uint_>("group_id") << " = get_group_id(0);\n" << | ||
|  | 
 | ||
|  |         k.decl<uint_>("key") << ";\n" << | ||
|  |         k.decl<value_out_type>("value") << ";\n" << | ||
|  |         "if(gid < count){\n" << | ||
|  |             k.var<uint_>("key") << " = " << | ||
|  |                 keys_first[k.var<const uint_>("gid")] << ";\n" << | ||
|  |             k.var<value_out_type>("value") << " = " << | ||
|  |                 values_first[k.var<const uint_>("gid")] << ";\n" << | ||
|  |             "lkeys[lid] = key;\n" << | ||
|  |             "lvals[lid] = value;\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         // Calculate carry out for each work group by performing Hillis/Steele scan | ||
|  |         // where only last element (key-value pair) is saved | ||
|  |         k.decl<value_out_type>("result") << " = value;\n" << | ||
|  |         k.decl<uint_>("other_key") << ";\n" << | ||
|  |         k.decl<value_out_type>("other_value") << ";\n" << | ||
|  | 
 | ||
|  |         "for(" << k.decl<uint_>("offset") << " = 1; " << | ||
|  |                   "offset < wg_size; offset *= 2){\n" | ||
|  |         "    barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  |         "    if(lid >= offset){\n" | ||
|  |         "        other_key = lkeys[lid - offset];\n" << | ||
|  |         "        if(other_key == key){\n" << | ||
|  |         "            other_value = lvals[lid - offset];\n" << | ||
|  |         "            result = " << function(k.var<value_out_type>("result"), | ||
|  |                                             k.var<value_out_type>("other_value")) << ";\n" << | ||
|  |         "        }\n" << | ||
|  |         "    }\n" << | ||
|  |         "    barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  |         "    lvals[lid] = result;\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         // save carry out | ||
|  |         "if(lid == (wg_size - 1)){\n" << | ||
|  |         carry_out_keys_first[k.var<const uint_>("group_id")] << " = key;\n" << | ||
|  |         carry_out_values_first[k.var<const uint_>("group_id")] << " = result;\n" << | ||
|  |         "}\n"; | ||
|  | 
 | ||
|  |     size_t work_groups_no = static_cast<size_t>( | ||
|  |         std::ceil(float(count) / work_group_size) | ||
|  |     ); | ||
|  | 
 | ||
|  |     const context &context = queue.get_context(); | ||
|  |     kernel kernel = k.compile(context); | ||
|  |     kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size)); | ||
|  |     kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size)); | ||
|  | 
 | ||
|  |     queue.enqueue_1d_range_kernel(kernel, | ||
|  |                                   0, | ||
|  |                                   work_groups_no * work_group_size, | ||
|  |                                   work_group_size); | ||
|  | } | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// Calculate carry-in by performing inclusive scan by key on carry-outs vector. | ||
|  | template<class OutputValueIterator, class BinaryFunction> | ||
|  | inline void carry_ins(vector<uint_>::iterator carry_out_keys_first, | ||
|  |                       OutputValueIterator carry_out_values_first, | ||
|  |                       OutputValueIterator carry_in_values_first, | ||
|  |                       size_t carry_out_size, | ||
|  |                       BinaryFunction function, | ||
|  |                       size_t work_group_size, | ||
|  |                       command_queue &queue) | ||
|  | { | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<OutputValueIterator>::value_type value_out_type; | ||
|  | 
 | ||
|  |     uint_ values_pre_work_item = static_cast<uint_>( | ||
|  |         std::ceil(float(carry_out_size) / work_group_size) | ||
|  |     ); | ||
|  | 
 | ||
|  |     detail::meta_kernel k("reduce_by_key_with_scan_carry_ins"); | ||
|  |     k.add_set_arg<const uint_>("carry_out_size", uint_(carry_out_size)); | ||
|  |     k.add_set_arg<const uint_>("values_per_work_item", values_pre_work_item); | ||
|  |     size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys"); | ||
|  |     size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals"); | ||
|  | 
 | ||
|  |     k << | ||
|  |         k.decl<uint_>("id") << " = get_global_id(0) * values_per_work_item;\n" << | ||
|  |         k.decl<uint_>("idx") << " = id;\n" << | ||
|  |         k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" << | ||
|  |         k.decl<const uint_>("lid") << " = get_local_id(0);\n" << | ||
|  |         k.decl<const uint_>("group_id") << " = get_group_id(0);\n" << | ||
|  | 
 | ||
|  |         k.decl<uint_>("key") << ";\n" << | ||
|  |         k.decl<value_out_type>("value") << ";\n" << | ||
|  |         k.decl<uint_>("previous_key") << ";\n" << | ||
|  |         k.decl<value_out_type>("result") << ";\n" << | ||
|  | 
 | ||
|  |         "if(id < carry_out_size){\n" << | ||
|  |             k.var<uint_>("previous_key") << " = " << | ||
|  |                 carry_out_keys_first[k.var<const uint_>("id")] << ";\n" << | ||
|  |             k.var<value_out_type>("result") << " = " << | ||
|  |                 carry_out_values_first[k.var<const uint_>("id")] << ";\n" << | ||
|  |             carry_in_values_first[k.var<const uint_>("id")] << " = result;\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         k.decl<const uint_>("end") << " = (id + values_per_work_item) <= carry_out_size" << | ||
|  |                                       " ? (values_per_work_item + id) :  carry_out_size;\n" << | ||
|  | 
 | ||
|  |         "for(idx = idx + 1; idx < end; idx += 1){\n" << | ||
|  |         "    key = " << carry_out_keys_first[k.var<const uint_>("idx")] << ";\n" << | ||
|  |         "    value = " << carry_out_values_first[k.var<const uint_>("idx")] << ";\n" << | ||
|  |         "    if(previous_key == key){\n" << | ||
|  |         "        result = " << function(k.var<value_out_type>("result"), | ||
|  |                                         k.var<value_out_type>("value")) << ";\n" << | ||
|  |         "    }\n else { \n" << | ||
|  |         "        result = value;\n" | ||
|  |         "    }\n" << | ||
|  |         "    " << carry_in_values_first[k.var<const uint_>("idx")] << " = result;\n" << | ||
|  |         "    previous_key = key;\n" | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         // save the last key and result to local memory | ||
|  |         "lkeys[lid] = previous_key;\n" << | ||
|  |         "lvals[lid] = result;\n" << | ||
|  | 
 | ||
|  |         // Hillis/Steele scan | ||
|  |         "for(" << k.decl<uint_>("offset") << " = 1; " << | ||
|  |                   "offset < wg_size; offset *= 2){\n" | ||
|  |         "    barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  |         "    if(lid >= offset){\n" | ||
|  |         "        key = lkeys[lid - offset];\n" << | ||
|  |         "        if(previous_key == key){\n" << | ||
|  |         "            value = lvals[lid - offset];\n" << | ||
|  |         "            result = " << function(k.var<value_out_type>("result"), | ||
|  |                                             k.var<value_out_type>("value")) << ";\n" << | ||
|  |         "        }\n" << | ||
|  |         "    }\n" << | ||
|  |         "    barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  |         "    lvals[lid] = result;\n" << | ||
|  |         "}\n" << | ||
|  |         "barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  | 
 | ||
|  |         "if(lid > 0){\n" << | ||
|  |         // load key-value reduced by previous work item | ||
|  |         "    previous_key = lkeys[lid - 1];\n" << | ||
|  |         "    result       = lvals[lid - 1];\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         // add key-value reduced by previous work item | ||
|  |         "for(idx = id; idx < id + values_per_work_item; idx += 1){\n" << | ||
|  |         // make sure all carry-ins are saved in global memory | ||
|  |         "    barrier( CLK_GLOBAL_MEM_FENCE );\n" << | ||
|  |         "    if(lid > 0 && idx < carry_out_size) {\n" | ||
|  |         "        key = " << carry_out_keys_first[k.var<const uint_>("idx")] << ";\n" << | ||
|  |         "        value = " << carry_in_values_first[k.var<const uint_>("idx")] << ";\n" << | ||
|  |         "        if(previous_key == key){\n" << | ||
|  |         "            value = " << function(k.var<value_out_type>("result"), | ||
|  |                                            k.var<value_out_type>("value")) << ";\n" << | ||
|  |         "        }\n" << | ||
|  |         "        " << carry_in_values_first[k.var<const uint_>("idx")] << " = value;\n" << | ||
|  |         "    }\n" << | ||
|  |         "}\n"; | ||
|  | 
 | ||
|  | 
 | ||
|  |     const context &context = queue.get_context(); | ||
|  |     kernel kernel = k.compile(context); | ||
|  |     kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size)); | ||
|  |     kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size)); | ||
|  | 
 | ||
|  |     queue.enqueue_1d_range_kernel(kernel, | ||
|  |                                   0, | ||
|  |                                   work_group_size, | ||
|  |                                   work_group_size); | ||
|  | } | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// | ||
|  | /// Perform final reduction by key. Each work item: | ||
|  | /// 1. Perform local work-group reduction (Hillis/Steele scan) | ||
|  | /// 2. Add carry-in (if keys are right) | ||
|  | /// 3. Save reduced value if next key is different than processed one | ||
|  | template<class InputKeyIterator, class InputValueIterator, | ||
|  |          class OutputKeyIterator, class OutputValueIterator, | ||
|  |          class BinaryFunction> | ||
|  | inline void final_reduction(InputKeyIterator keys_first, | ||
|  |                             InputValueIterator values_first, | ||
|  |                             OutputKeyIterator keys_result, | ||
|  |                             OutputValueIterator values_result, | ||
|  |                             size_t count, | ||
|  |                             BinaryFunction function, | ||
|  |                             vector<uint_>::iterator new_keys_first, | ||
|  |                             vector<uint_>::iterator carry_in_keys_first, | ||
|  |                             OutputValueIterator carry_in_values_first, | ||
|  |                             size_t carry_in_size, | ||
|  |                             size_t work_group_size, | ||
|  |                             command_queue &queue) | ||
|  | { | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<OutputValueIterator>::value_type value_out_type; | ||
|  | 
 | ||
|  |     detail::meta_kernel k("reduce_by_key_with_scan_final_reduction"); | ||
|  |     k.add_set_arg<const uint_>("count", uint_(count)); | ||
|  |     size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys"); | ||
|  |     size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals"); | ||
|  | 
 | ||
|  |     k << | ||
|  |         k.decl<const uint_>("gid") << " = get_global_id(0);\n" << | ||
|  |         k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" << | ||
|  |         k.decl<const uint_>("lid") << " = get_local_id(0);\n" << | ||
|  |         k.decl<const uint_>("group_id") << " = get_group_id(0);\n" << | ||
|  | 
 | ||
|  |         k.decl<uint_>("key") << ";\n" << | ||
|  |         k.decl<value_out_type>("value") << ";\n" | ||
|  | 
 | ||
|  |         "if(gid < count){\n" << | ||
|  |             k.var<uint_>("key") << " = " << | ||
|  |                 new_keys_first[k.var<const uint_>("gid")] << ";\n" << | ||
|  |             k.var<value_out_type>("value") << " = " << | ||
|  |                 values_first[k.var<const uint_>("gid")] << ";\n" << | ||
|  |             "lkeys[lid] = key;\n" << | ||
|  |             "lvals[lid] = value;\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         // Hillis/Steele scan | ||
|  |         k.decl<value_out_type>("result") << " = value;\n" << | ||
|  |         k.decl<uint_>("other_key") << ";\n" << | ||
|  |         k.decl<value_out_type>("other_value") << ";\n" << | ||
|  | 
 | ||
|  |         "for(" << k.decl<uint_>("offset") << " = 1; " << | ||
|  |                  "offset < wg_size ; offset *= 2){\n" | ||
|  |         "    barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  |         "    if(lid >= offset) {\n" << | ||
|  |         "        other_key = lkeys[lid - offset];\n" << | ||
|  |         "        if(other_key == key){\n" << | ||
|  |         "            other_value = lvals[lid - offset];\n" << | ||
|  |         "            result = " << function(k.var<value_out_type>("result"), | ||
|  |                                             k.var<value_out_type>("other_value")) << ";\n" << | ||
|  |         "        }\n" << | ||
|  |         "    }\n" << | ||
|  |         "    barrier(CLK_LOCAL_MEM_FENCE);\n" << | ||
|  |         "    lvals[lid] = result;\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         "if(gid >= count) {\n return;\n};\n" << | ||
|  | 
 | ||
|  |         k.decl<const bool>("save") << " = (gid < (count - 1)) ?" | ||
|  |                                    << new_keys_first[k.var<const uint_>("gid + 1")] << " != key" << | ||
|  |                                    ": true;\n" << | ||
|  | 
 | ||
|  |         // Add carry in | ||
|  |         k.decl<uint_>("carry_in_key") << ";\n" << | ||
|  |         "if(group_id > 0 && save) {\n" << | ||
|  |         "    carry_in_key = " << carry_in_keys_first[k.var<const uint_>("group_id - 1")] << ";\n" << | ||
|  |         "    if(key == carry_in_key){\n" << | ||
|  |         "        other_value = " << carry_in_values_first[k.var<const uint_>("group_id - 1")] << ";\n" << | ||
|  |         "        result = " << function(k.var<value_out_type>("result"), | ||
|  |                                         k.var<value_out_type>("other_value")) << ";\n" << | ||
|  |         "    }\n" << | ||
|  |         "}\n" << | ||
|  | 
 | ||
|  |         // Save result only if the next key is different or it's the last element. | ||
|  |         "if(save){\n" << | ||
|  |         keys_result[k.var<uint_>("key")] << " = " << keys_first[k.var<const uint_>("gid")] << ";\n" << | ||
|  |         values_result[k.var<uint_>("key")] << " = result;\n" << | ||
|  |         "}\n" | ||
|  |         ; | ||
|  | 
 | ||
|  |     size_t work_groups_no = static_cast<size_t>( | ||
|  |         std::ceil(float(count) / work_group_size) | ||
|  |     ); | ||
|  | 
 | ||
|  |     const context &context = queue.get_context(); | ||
|  |     kernel kernel = k.compile(context); | ||
|  |     kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size)); | ||
|  |     kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size)); | ||
|  | 
 | ||
|  |     queue.enqueue_1d_range_kernel(kernel, | ||
|  |                                   0, | ||
|  |                                   work_groups_no * work_group_size, | ||
|  |                                   work_group_size); | ||
|  | } | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// Returns preferred work group size for reduce by key with scan algorithm. | ||
|  | template<class KeyType, class ValueType> | ||
|  | inline size_t get_work_group_size(const device& device) | ||
|  | { | ||
|  |     std::string cache_key = std::string("__boost_reduce_by_key_with_scan") | ||
|  |         + "k_" + type_name<KeyType>() + "_v_" + type_name<ValueType>(); | ||
|  | 
 | ||
|  |     // load parameters | ||
|  |     boost::shared_ptr<parameter_cache> parameters = | ||
|  |         detail::parameter_cache::get_global_cache(device); | ||
|  | 
 | ||
|  |     return (std::max)( | ||
|  |         static_cast<size_t>(parameters->get(cache_key, "wgsize", 256)), | ||
|  |         static_cast<size_t>(device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>()) | ||
|  |     ); | ||
|  | } | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// | ||
|  | /// 1. For each work group carry-out value is calculated (it's done by key-oriented | ||
|  | /// Hillis/Steele scan). Carry-out is a pair of the last key processed by work | ||
|  | /// group and sum of all values under this key in work group. | ||
|  | /// 2. From every carry-out carry-in is calculated by performing inclusive scan | ||
|  | /// by key. | ||
|  | /// 3. Final reduction by key is performed (key-oriented Hillis/Steele scan), | ||
|  | /// carry-in values are added where needed. | ||
|  | template<class InputKeyIterator, class InputValueIterator, | ||
|  |          class OutputKeyIterator, class OutputValueIterator, | ||
|  |          class BinaryFunction, class BinaryPredicate> | ||
|  | inline size_t reduce_by_key_with_scan(InputKeyIterator keys_first, | ||
|  |                                       InputKeyIterator keys_last, | ||
|  |                                       InputValueIterator values_first, | ||
|  |                                       OutputKeyIterator keys_result, | ||
|  |                                       OutputValueIterator values_result, | ||
|  |                                       BinaryFunction function, | ||
|  |                                       BinaryPredicate predicate, | ||
|  |                                       command_queue &queue) | ||
|  | { | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<InputValueIterator>::value_type value_type; | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<InputKeyIterator>::value_type key_type; | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<OutputValueIterator>::value_type value_out_type; | ||
|  | 
 | ||
|  |     const context &context = queue.get_context(); | ||
|  |     size_t count = detail::iterator_range_size(keys_first, keys_last); | ||
|  | 
 | ||
|  |     if(count == 0){ | ||
|  |         return size_t(0); | ||
|  |     } | ||
|  | 
 | ||
|  |     const device &device = queue.get_device(); | ||
|  |     size_t work_group_size = get_work_group_size<value_type, key_type>(device); | ||
|  | 
 | ||
|  |     // Replace original key with unsigned integer keys generated based on given | ||
|  |     // predicate. New key is also an index for keys_result and values_result vectors, | ||
|  |     // which points to place where reduced value should be saved. | ||
|  |     vector<uint_> new_keys(count, context); | ||
|  |     vector<uint_>::iterator new_keys_first = new_keys.begin(); | ||
|  |     generate_uint_keys(keys_first, count, predicate, new_keys_first, | ||
|  |                        work_group_size, queue); | ||
|  | 
 | ||
|  |     // Calculate carry-out and carry-in vectors size | ||
|  |     const size_t carry_out_size = static_cast<size_t>( | ||
|  |            std::ceil(float(count) / work_group_size) | ||
|  |     ); | ||
|  |     vector<uint_> carry_out_keys(carry_out_size, context); | ||
|  |     vector<value_out_type> carry_out_values(carry_out_size, context); | ||
|  |     carry_outs(new_keys_first, values_first, count, carry_out_keys.begin(), | ||
|  |                carry_out_values.begin(), function, work_group_size, queue); | ||
|  | 
 | ||
|  |     vector<value_out_type> carry_in_values(carry_out_size, context); | ||
|  |     carry_ins(carry_out_keys.begin(), carry_out_values.begin(), | ||
|  |               carry_in_values.begin(), carry_out_size, function, work_group_size, | ||
|  |               queue); | ||
|  | 
 | ||
|  |     final_reduction(keys_first, values_first, keys_result, values_result, | ||
|  |                     count, function, new_keys_first, carry_out_keys.begin(), | ||
|  |                     carry_in_values.begin(), carry_out_size, work_group_size, | ||
|  |                     queue); | ||
|  | 
 | ||
|  |     const size_t result = read_single_value<uint_>(new_keys.get_buffer(), | ||
|  |                                                    count - 1, queue); | ||
|  |     return result + 1; | ||
|  | } | ||
|  | 
 | ||
|  | /// \internal_ | ||
|  | /// Return true if requirements for running reduce by key with scan on given | ||
|  | /// device are met (at least one work group of preferred size can be run). | ||
|  | template<class InputKeyIterator, class InputValueIterator, | ||
|  |          class OutputKeyIterator, class OutputValueIterator> | ||
|  | bool reduce_by_key_with_scan_requirements_met(InputKeyIterator keys_first, | ||
|  |                                               InputValueIterator values_first, | ||
|  |                                               OutputKeyIterator keys_result, | ||
|  |                                               OutputValueIterator values_result, | ||
|  |                                               const size_t count, | ||
|  |                                               command_queue &queue) | ||
|  | { | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<InputValueIterator>::value_type value_type; | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<InputKeyIterator>::value_type key_type; | ||
|  |     typedef typename | ||
|  |         std::iterator_traits<OutputValueIterator>::value_type value_out_type; | ||
|  | 
 | ||
|  |     (void) keys_first; | ||
|  |     (void) values_first; | ||
|  |     (void) keys_result; | ||
|  |     (void) values_result; | ||
|  | 
 | ||
|  |     const device &device = queue.get_device(); | ||
|  |     // device must have dedicated local memory storage | ||
|  |     if(device.get_info<CL_DEVICE_LOCAL_MEM_TYPE>() != CL_LOCAL) | ||
|  |     { | ||
|  |         return false; | ||
|  |     } | ||
|  | 
 | ||
|  |     // local memory size in bytes (per compute unit) | ||
|  |     const size_t local_mem_size = device.get_info<CL_DEVICE_LOCAL_MEM_SIZE>(); | ||
|  | 
 | ||
|  |     // preferred work group size | ||
|  |     size_t work_group_size = get_work_group_size<key_type, value_type>(device); | ||
|  | 
 | ||
|  |     // local memory size needed to perform parallel reduction | ||
|  |     size_t required_local_mem_size = 0; | ||
|  |     // keys size | ||
|  |     required_local_mem_size += sizeof(uint_) * work_group_size; | ||
|  |     // reduced values size | ||
|  |     required_local_mem_size += sizeof(value_out_type) * work_group_size; | ||
|  | 
 | ||
|  |     return (required_local_mem_size <= local_mem_size); | ||
|  | } | ||
|  | 
 | ||
|  | } // end detail namespace | ||
|  | } // end compute namespace | ||
|  | } // end boost namespace | ||
|  | 
 | ||
|  | #endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP |