720 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			720 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  (C) Copyright John Maddock 2006. | ||
|  | //  (C) Copyright Jeremy William Murphy 2015. | ||
|  | 
 | ||
|  | 
 | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP | ||
|  | #define BOOST_MATH_TOOLS_POLYNOMIAL_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/assert.hpp> | ||
|  | #include <boost/config.hpp> | ||
|  | #include <boost/config/suffix.hpp> | ||
|  | #include <boost/function.hpp> | ||
|  | #include <boost/lambda/lambda.hpp> | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/real_cast.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/math/special_functions/binomial.hpp> | ||
|  | #include <boost/operators.hpp> | ||
|  | 
 | ||
|  | #include <vector> | ||
|  | #include <ostream> | ||
|  | #include <algorithm> | ||
|  | #ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST | ||
|  | #include <initializer_list> | ||
|  | #endif | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ namespace tools{ | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T chebyshev_coefficient(unsigned n, unsigned m) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    if(m > n) | ||
|  |       return 0; | ||
|  |    if((n & 1) != (m & 1)) | ||
|  |       return 0; | ||
|  |    if(n == 0) | ||
|  |       return 1; | ||
|  |    T result = T(n) / 2; | ||
|  |    unsigned r = n - m; | ||
|  |    r /= 2; | ||
|  | 
 | ||
|  |    BOOST_ASSERT(n - 2 * r == m); | ||
|  | 
 | ||
|  |    if(r & 1) | ||
|  |       result = -result; | ||
|  |    result /= n - r; | ||
|  |    result *= boost::math::binomial_coefficient<T>(n - r, r); | ||
|  |    result *= ldexp(1.0f, m); | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class Seq> | ||
|  | Seq polynomial_to_chebyshev(const Seq& s) | ||
|  | { | ||
|  |    // Converts a Polynomial into Chebyshev form: | ||
|  |    typedef typename Seq::value_type value_type; | ||
|  |    typedef typename Seq::difference_type difference_type; | ||
|  |    Seq result(s); | ||
|  |    difference_type order = s.size() - 1; | ||
|  |    difference_type even_order = order & 1 ? order - 1 : order; | ||
|  |    difference_type odd_order = order & 1 ? order : order - 1; | ||
|  | 
 | ||
|  |    for(difference_type i = even_order; i >= 0; i -= 2) | ||
|  |    { | ||
|  |       value_type val = s[i]; | ||
|  |       for(difference_type k = even_order; k > i; k -= 2) | ||
|  |       { | ||
|  |          val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i)); | ||
|  |       } | ||
|  |       val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i)); | ||
|  |       result[i] = val; | ||
|  |    } | ||
|  |    result[0] *= 2; | ||
|  | 
 | ||
|  |    for(difference_type i = odd_order; i >= 0; i -= 2) | ||
|  |    { | ||
|  |       value_type val = s[i]; | ||
|  |       for(difference_type k = odd_order; k > i; k -= 2) | ||
|  |       { | ||
|  |          val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i)); | ||
|  |       } | ||
|  |       val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i)); | ||
|  |       result[i] = val; | ||
|  |    } | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class Seq, class T> | ||
|  | T evaluate_chebyshev(const Seq& a, const T& x) | ||
|  | { | ||
|  |    // Clenshaw's formula: | ||
|  |    typedef typename Seq::difference_type difference_type; | ||
|  |    T yk2 = 0; | ||
|  |    T yk1 = 0; | ||
|  |    T yk = 0; | ||
|  |    for(difference_type i = a.size() - 1; i >= 1; --i) | ||
|  |    { | ||
|  |       yk2 = yk1; | ||
|  |       yk1 = yk; | ||
|  |       yk = 2 * x * yk1 - yk2 + a[i]; | ||
|  |    } | ||
|  |    return a[0] / 2 + yk * x - yk1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | class polynomial; | ||
|  | 
 | ||
|  | namespace detail { | ||
|  | 
 | ||
|  | /** | ||
|  | * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998 | ||
|  | * Chapter 4.6.1, Algorithm D: Division of polynomials over a field. | ||
|  | * | ||
|  | * @tparam  T   Coefficient type, must be not be an integer. | ||
|  | * | ||
|  | * Template-parameter T actually must be a field but we don't currently have that | ||
|  | * subtlety of distinction. | ||
|  | */ | ||
|  | template <typename T, typename N> | ||
|  | BOOST_DEDUCED_TYPENAME disable_if_c<std::numeric_limits<T>::is_integer, void >::type | ||
|  | division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k) | ||
|  | { | ||
|  |     q[k] = u[n + k] / v[n]; | ||
|  |     for (N j = n + k; j > k;) | ||
|  |     { | ||
|  |         j--; | ||
|  |         u[j] -= q[k] * v[j - k]; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class N> | ||
|  | T integer_power(T t, N n) | ||
|  | { | ||
|  |    switch(n) | ||
|  |    { | ||
|  |    case 0: | ||
|  |       return static_cast<T>(1u); | ||
|  |    case 1: | ||
|  |       return t; | ||
|  |    case 2: | ||
|  |       return t * t; | ||
|  |    case 3: | ||
|  |       return t * t * t; | ||
|  |    } | ||
|  |    T result = integer_power(t, n / 2); | ||
|  |    result *= result; | ||
|  |    if(n & 1) | ||
|  |       result *= t; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /** | ||
|  | * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998 | ||
|  | * Chapter 4.6.1, Algorithm R: Pseudo-division of polynomials. | ||
|  | * | ||
|  | * @tparam  T   Coefficient type, must be an integer. | ||
|  | * | ||
|  | * Template-parameter T actually must be a unique factorization domain but we | ||
|  | * don't currently have that subtlety of distinction. | ||
|  | */ | ||
|  | template <typename T, typename N> | ||
|  | BOOST_DEDUCED_TYPENAME enable_if_c<std::numeric_limits<T>::is_integer, void >::type | ||
|  | division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k) | ||
|  | { | ||
|  |     q[k] = u[n + k] * integer_power(v[n], k); | ||
|  |     for (N j = n + k; j > 0;) | ||
|  |     { | ||
|  |         j--; | ||
|  |         u[j] = v[n] * u[j] - (j < k ? T(0) : u[n + k] * v[j - k]); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /** | ||
|  |  * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998 | ||
|  |  * Chapter 4.6.1, Algorithm D and R: Main loop. | ||
|  |  * | ||
|  |  * @param   u   Dividend. | ||
|  |  * @param   v   Divisor. | ||
|  |  */ | ||
|  | template <typename T> | ||
|  | std::pair< polynomial<T>, polynomial<T> > | ||
|  | division(polynomial<T> u, const polynomial<T>& v) | ||
|  | { | ||
|  |     BOOST_ASSERT(v.size() <= u.size()); | ||
|  |     BOOST_ASSERT(v); | ||
|  |     BOOST_ASSERT(u); | ||
|  | 
 | ||
|  |     typedef typename polynomial<T>::size_type N; | ||
|  |      | ||
|  |     N const m = u.size() - 1, n = v.size() - 1; | ||
|  |     N k = m - n; | ||
|  |     polynomial<T> q; | ||
|  |     q.data().resize(m - n + 1); | ||
|  | 
 | ||
|  |     do | ||
|  |     { | ||
|  |         division_impl(q, u, v, n, k); | ||
|  |     } | ||
|  |     while (k-- != 0); | ||
|  |     u.data().resize(n); | ||
|  |     u.normalize(); // Occasionally, the remainder is zeroes. | ||
|  |     return std::make_pair(q, u); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | struct identity | ||
|  | { | ||
|  |     T operator()(T const &x) const | ||
|  |     { | ||
|  |         return x; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | } // namespace detail | ||
|  | 
 | ||
|  | /** | ||
|  |  * Returns the zero element for multiplication of polynomials. | ||
|  |  */ | ||
|  | template <class T> | ||
|  | polynomial<T> zero_element(std::multiplies< polynomial<T> >) | ||
|  | { | ||
|  |     return polynomial<T>(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | polynomial<T> identity_element(std::multiplies< polynomial<T> >) | ||
|  | { | ||
|  |     return polynomial<T>(T(1)); | ||
|  | } | ||
|  | 
 | ||
|  | /* Calculates a / b and a % b, returning the pair (quotient, remainder) together | ||
|  |  * because the same amount of computation yields both. | ||
|  |  * This function is not defined for division by zero: user beware. | ||
|  |  */ | ||
|  | template <typename T> | ||
|  | std::pair< polynomial<T>, polynomial<T> > | ||
|  | quotient_remainder(const polynomial<T>& dividend, const polynomial<T>& divisor) | ||
|  | { | ||
|  |     BOOST_ASSERT(divisor); | ||
|  |     if (dividend.size() < divisor.size()) | ||
|  |         return std::make_pair(polynomial<T>(), dividend); | ||
|  |     return detail::division(dividend, divisor); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | class polynomial : | ||
|  |     equality_comparable< polynomial<T>, | ||
|  |     dividable< polynomial<T>, | ||
|  |     dividable2< polynomial<T>, T, | ||
|  |     modable< polynomial<T>, | ||
|  |     modable2< polynomial<T>, T > > > > > | ||
|  | { | ||
|  | public: | ||
|  |    // typedefs: | ||
|  |    typedef typename std::vector<T>::value_type value_type; | ||
|  |    typedef typename std::vector<T>::size_type size_type; | ||
|  | 
 | ||
|  |    // construct: | ||
|  |    polynomial(){} | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial(const U* data, unsigned order) | ||
|  |       : m_data(data, data + order + 1) | ||
|  |    { | ||
|  |        normalize(); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class I> | ||
|  |    polynomial(I first, I last) | ||
|  |    : m_data(first, last) | ||
|  |    { | ||
|  |        normalize(); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    explicit polynomial(const U& point) | ||
|  |    { | ||
|  |        if (point != U(0)) | ||
|  |           m_data.push_back(point); | ||
|  |    } | ||
|  | 
 | ||
|  |    // copy: | ||
|  |    polynomial(const polynomial& p) | ||
|  |       : m_data(p.m_data) { } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial(const polynomial<U>& p) | ||
|  |    { | ||
|  |       for(unsigned i = 0; i < p.size(); ++i) | ||
|  |       { | ||
|  |          m_data.push_back(boost::math::tools::real_cast<T>(p[i])); | ||
|  |       } | ||
|  |    } | ||
|  |     | ||
|  | #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500) | ||
|  |     polynomial(std::initializer_list<T> l) : polynomial(std::begin(l), std::end(l)) | ||
|  |     { | ||
|  |     } | ||
|  |      | ||
|  |     polynomial& | ||
|  |     operator=(std::initializer_list<T> l) | ||
|  |     { | ||
|  |         m_data.assign(std::begin(l), std::end(l)); | ||
|  |         normalize(); | ||
|  |         return *this; | ||
|  |     } | ||
|  | #endif | ||
|  | 
 | ||
|  | 
 | ||
|  |    // access: | ||
|  |    size_type size()const { return m_data.size(); } | ||
|  |    size_type degree()const | ||
|  |    { | ||
|  |        if (size() == 0) | ||
|  |            throw std::logic_error("degree() is undefined for the zero polynomial."); | ||
|  |        return m_data.size() - 1; | ||
|  |     } | ||
|  |    value_type& operator[](size_type i) | ||
|  |    { | ||
|  |       return m_data[i]; | ||
|  |    } | ||
|  |    const value_type& operator[](size_type i)const | ||
|  |    { | ||
|  |       return m_data[i]; | ||
|  |    } | ||
|  |    T evaluate(T z)const | ||
|  |    { | ||
|  |       return m_data.size() > 0 ? boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size()) : 0; | ||
|  |    } | ||
|  |    std::vector<T> chebyshev()const | ||
|  |    { | ||
|  |       return polynomial_to_chebyshev(m_data); | ||
|  |    } | ||
|  | 
 | ||
|  |    std::vector<T> const& data() const | ||
|  |    { | ||
|  |        return m_data; | ||
|  |    } | ||
|  | 
 | ||
|  |    std::vector<T> & data() | ||
|  |    { | ||
|  |        return m_data; | ||
|  |    } | ||
|  | 
 | ||
|  |    // operators: | ||
|  |    template <class U> | ||
|  |    polynomial& operator +=(const U& value) | ||
|  |    { | ||
|  |        addition(value); | ||
|  |        normalize(); | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial& operator -=(const U& value) | ||
|  |    { | ||
|  |        subtraction(value); | ||
|  |        normalize(); | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial& operator *=(const U& value) | ||
|  |    { | ||
|  |       multiplication(value); | ||
|  |       normalize(); | ||
|  |       return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial& operator /=(const U& value) | ||
|  |    { | ||
|  |        division(value); | ||
|  |        normalize(); | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial& operator %=(const U& /*value*/) | ||
|  |    { | ||
|  |        // We can always divide by a scalar, so there is no remainder: | ||
|  |        this->set_zero(); | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial& operator +=(const polynomial<U>& value) | ||
|  |    { | ||
|  |       addition(value); | ||
|  |       normalize(); | ||
|  |       return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class U> | ||
|  |    polynomial& operator -=(const polynomial<U>& value) | ||
|  |    { | ||
|  |        subtraction(value); | ||
|  |        normalize(); | ||
|  |        return *this; | ||
|  |    } | ||
|  |    template <class U> | ||
|  |    polynomial& operator *=(const polynomial<U>& value) | ||
|  |    { | ||
|  |       // TODO: FIXME: use O(N log(N)) algorithm!!! | ||
|  |       if (!value) | ||
|  |       { | ||
|  |           this->set_zero(); | ||
|  |           return *this; | ||
|  |       } | ||
|  |       std::vector<T> prod(size() + value.size() - 1, T(0)); | ||
|  |       for (size_type i = 0; i < value.size(); ++i) | ||
|  |          for (size_type j = 0; j < size(); ++j) | ||
|  |             prod[i+j] += m_data[j] * value[i]; | ||
|  |       m_data.swap(prod); | ||
|  |       return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <typename U> | ||
|  |    polynomial& operator /=(const polynomial<U>& value) | ||
|  |    { | ||
|  |        *this = quotient_remainder(*this, value).first; | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <typename U> | ||
|  |    polynomial& operator %=(const polynomial<U>& value) | ||
|  |    { | ||
|  |        *this = quotient_remainder(*this, value).second; | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <typename U> | ||
|  |    polynomial& operator >>=(U const &n) | ||
|  |    { | ||
|  |        BOOST_ASSERT(n <= m_data.size()); | ||
|  |        m_data.erase(m_data.begin(), m_data.begin() + n); | ||
|  |        return *this; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <typename U> | ||
|  |    polynomial& operator <<=(U const &n) | ||
|  |    { | ||
|  |        m_data.insert(m_data.begin(), n, static_cast<T>(0)); | ||
|  |        normalize(); | ||
|  |        return *this; | ||
|  |    } | ||
|  |     | ||
|  |    // Convenient and efficient query for zero. | ||
|  |    bool is_zero() const | ||
|  |    { | ||
|  |        return m_data.empty(); | ||
|  |    } | ||
|  |     | ||
|  |    // Conversion to bool. | ||
|  | #ifdef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS | ||
|  |    typedef bool (polynomial::*unmentionable_type)() const; | ||
|  | 
 | ||
|  |    BOOST_FORCEINLINE operator unmentionable_type() const | ||
|  |    { | ||
|  |        return is_zero() ? false : &polynomial::is_zero; | ||
|  |    } | ||
|  | #else | ||
|  |    BOOST_FORCEINLINE explicit operator bool() const | ||
|  |    { | ||
|  |        return !m_data.empty(); | ||
|  |    } | ||
|  | #endif | ||
|  | 
 | ||
|  |    // Fast way to set a polynomial to zero. | ||
|  |    void set_zero() | ||
|  |    { | ||
|  |        m_data.clear(); | ||
|  |    } | ||
|  |      | ||
|  |     /** Remove zero coefficients 'from the top', that is for which there are no | ||
|  |     *        non-zero coefficients of higher degree. */ | ||
|  |    void normalize() | ||
|  |    { | ||
|  |        using namespace boost::lambda; | ||
|  |        m_data.erase(std::find_if(m_data.rbegin(), m_data.rend(), _1 != T(0)).base(), m_data.end()); | ||
|  |    } | ||
|  | 
 | ||
|  | private: | ||
|  |     template <class U, class R1, class R2> | ||
|  |     polynomial& addition(const U& value, R1 sign, R2 op) | ||
|  |     { | ||
|  |         if(m_data.size() == 0) | ||
|  |             m_data.push_back(sign(value)); | ||
|  |         else | ||
|  |             m_data[0] = op(m_data[0], value); | ||
|  |         return *this; | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U> | ||
|  |     polynomial& addition(const U& value) | ||
|  |     { | ||
|  |         return addition(value, detail::identity<U>(), std::plus<U>()); | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U> | ||
|  |     polynomial& subtraction(const U& value) | ||
|  |     { | ||
|  |         return addition(value, std::negate<U>(), std::minus<U>()); | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U, class R1, class R2> | ||
|  |     polynomial& addition(const polynomial<U>& value, R1 sign, R2 op) | ||
|  |     { | ||
|  |         size_type s1 = (std::min)(m_data.size(), value.size()); | ||
|  |         for(size_type i = 0; i < s1; ++i) | ||
|  |             m_data[i] = op(m_data[i], value[i]); | ||
|  |         for(size_type i = s1; i < value.size(); ++i) | ||
|  |             m_data.push_back(sign(value[i])); | ||
|  |         return *this; | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U> | ||
|  |     polynomial& addition(const polynomial<U>& value) | ||
|  |     { | ||
|  |         return addition(value, detail::identity<U>(), std::plus<U>()); | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U> | ||
|  |     polynomial& subtraction(const polynomial<U>& value) | ||
|  |     { | ||
|  |         return addition(value, std::negate<U>(), std::minus<U>()); | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U> | ||
|  |     polynomial& multiplication(const U& value) | ||
|  |     { | ||
|  |         using namespace boost::lambda; | ||
|  |         std::transform(m_data.begin(), m_data.end(), m_data.begin(), ret<T>(_1 * value)); | ||
|  |         return *this; | ||
|  |     } | ||
|  | 
 | ||
|  |     template <class U> | ||
|  |     polynomial& division(const U& value) | ||
|  |     { | ||
|  |         using namespace boost::lambda; | ||
|  |         std::transform(m_data.begin(), m_data.end(), m_data.begin(), ret<T>(_1 / value)); | ||
|  |         return *this; | ||
|  |     } | ||
|  | 
 | ||
|  |     std::vector<T> m_data; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result += b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result -= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result *= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class U> | ||
|  | inline polynomial<T> operator + (const polynomial<T>& a, const U& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result += b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class U> | ||
|  | inline polynomial<T> operator - (const polynomial<T>& a, const U& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result -= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class U> | ||
|  | inline polynomial<T> operator * (const polynomial<T>& a, const U& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result *= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class U, class T> | ||
|  | inline polynomial<T> operator + (const U& a, const polynomial<T>& b) | ||
|  | { | ||
|  |    polynomial<T> result(b); | ||
|  |    result += a; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class U, class T> | ||
|  | inline polynomial<T> operator - (const U& a, const polynomial<T>& b) | ||
|  | { | ||
|  |    polynomial<T> result(a); | ||
|  |    result -= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class U, class T> | ||
|  | inline polynomial<T> operator * (const U& a, const polynomial<T>& b) | ||
|  | { | ||
|  |    polynomial<T> result(b); | ||
|  |    result *= a; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | bool operator == (const polynomial<T> &a, const polynomial<T> &b) | ||
|  | { | ||
|  |     return a.data() == b.data(); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, typename U> | ||
|  | polynomial<T> operator >> (const polynomial<T>& a, const U& b) | ||
|  | { | ||
|  |     polynomial<T> result(a); | ||
|  |     result >>= b; | ||
|  |     return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, typename U> | ||
|  | polynomial<T> operator << (const polynomial<T>& a, const U& b) | ||
|  | { | ||
|  |     polynomial<T> result(a); | ||
|  |     result <<= b; | ||
|  |     return result; | ||
|  | } | ||
|  | 
 | ||
|  | // Unary minus (negate). | ||
|  | template <class T> | ||
|  | polynomial<T> operator - (polynomial<T> a) | ||
|  | { | ||
|  |     std::transform(a.data().begin(), a.data().end(), a.data().begin(), std::negate<T>()); | ||
|  |     return a; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | bool odd(polynomial<T> const &a) | ||
|  | { | ||
|  |     return a.size() > 0 && a[0] != static_cast<T>(0); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | bool even(polynomial<T> const &a) | ||
|  | { | ||
|  |     return !odd(a); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | polynomial<T> pow(polynomial<T> base, int exp) | ||
|  | { | ||
|  |     if (exp < 0) | ||
|  |         return policies::raise_domain_error( | ||
|  |                 "boost::math::tools::pow<%1%>", | ||
|  |                 "Negative powers are not supported for polynomials.", | ||
|  |                 base, policies::policy<>()); | ||
|  |         // if the policy is ignore_error or errno_on_error, raise_domain_error | ||
|  |         // will return std::numeric_limits<polynomial<T>>::quiet_NaN(), which | ||
|  |         // defaults to polynomial<T>(), which is the zero polynomial | ||
|  |     polynomial<T> result(T(1)); | ||
|  |     if (exp & 1) | ||
|  |         result = base; | ||
|  |     /* "Exponentiation by squaring" */ | ||
|  |     while (exp >>= 1) | ||
|  |     { | ||
|  |         base *= base; | ||
|  |         if (exp & 1) | ||
|  |             result *= base; | ||
|  |     } | ||
|  |     return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class charT, class traits, class T> | ||
|  | inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly) | ||
|  | { | ||
|  |    os << "{ "; | ||
|  |    for(unsigned i = 0; i < poly.size(); ++i) | ||
|  |    { | ||
|  |       if(i) os << ", "; | ||
|  |       os << poly[i]; | ||
|  |    } | ||
|  |    os << " }"; | ||
|  |    return os; | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace tools | ||
|  | } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |