49 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
		
		
			
		
	
	
			49 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
|   | subroutine baseline(s,nfa,nfb,sbase)
 | ||
|  | 
 | ||
|  | ! Fit baseline to spectrum (for FT8)
 | ||
|  | ! Input:  s(npts)         Linear scale in power
 | ||
|  | ! Output: sbase(npts)    Baseline
 | ||
|  | 
 | ||
|  |   implicit real*8 (a-h,o-z)
 | ||
|  |   real*4 s(1920)
 | ||
|  |   real*4 sbase(1920)
 | ||
|  |   real*4 base
 | ||
|  |   real*8 x(1000),y(1000),a(5)
 | ||
|  |   data nseg/10/,npct/10/
 | ||
|  | 
 | ||
|  |   df=12000.0/3840.0                    !3.125 Hz
 | ||
|  |   ia=max(1,nint(nfa/df))
 | ||
|  |   ib=nint(nfb/df)
 | ||
|  |   do i=ia,ib
 | ||
|  |      s(i)=10.0*log10(s(i))            !Convert to dB scale
 | ||
|  |   enddo
 | ||
|  | 
 | ||
|  |   nterms=5
 | ||
|  |   nlen=(ib-ia+1)/nseg                 !Length of test segment
 | ||
|  |   i0=(ib-ia+1)/2                      !Midpoint
 | ||
|  |   k=0
 | ||
|  |   do n=1,nseg                         !Loop over all segments
 | ||
|  |      ja=ia + (n-1)*nlen
 | ||
|  |      jb=ja+nlen-1
 | ||
|  |      call pctile(s(ja),nlen,npct,base) !Find lowest npct of points
 | ||
|  |      do i=ja,jb
 | ||
|  |         if(s(i).le.base) then
 | ||
|  |            if (k.lt.1000) k=k+1       !Save all "lower envelope" points
 | ||
|  |            x(k)=i-i0
 | ||
|  |            y(k)=s(i)
 | ||
|  |         endif
 | ||
|  |      enddo
 | ||
|  |   enddo
 | ||
|  |   kz=k
 | ||
|  |   a=0.
 | ||
|  |   call polyfit(x,y,y,kz,nterms,0,a,chisqr)  !Fit a low-order polynomial
 | ||
|  |   do i=ia,ib
 | ||
|  |      t=i-i0
 | ||
|  |      sbase(i)=a(1)+t*(a(2)+t*(a(3)+t*(a(4)+t*(a(5))))) + 0.65
 | ||
|  | !     write(51,3051) i*df,s(i),sbase(i)
 | ||
|  | !3051 format(3f12.3)
 | ||
|  |   enddo
 | ||
|  | 
 | ||
|  |   return
 | ||
|  | end subroutine baseline
 |