js8call/.svn/pristine/29/29b3b52c3314fe5df8ac3580380fad316e933f8c.svn-base

444 lines
19 KiB
Plaintext
Raw Normal View History

2018-02-08 21:28:33 -05:00
//---------------------------------------------------------------------------//
// Copyright (c) 2015 Jakub Szuppe <j.szuppe@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
#include <algorithm>
#include <boost/compute/types.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/allocator/pinned_allocator.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/parameter_cache.hpp>
#include <boost/compute/memory/local_buffer.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/utility/program_cache.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class InputIterator>
bool find_extrema_with_reduce_requirements_met(InputIterator first,
InputIterator last,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
const device &device = queue.get_device();
// device must have dedicated local memory storage
// otherwise reduction would be highly inefficient
if(device.get_info<CL_DEVICE_LOCAL_MEM_TYPE>() != CL_LOCAL)
{
return false;
}
const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
// local memory size in bytes (per compute unit)
const size_t local_mem_size = device.get_info<CL_DEVICE_LOCAL_MEM_SIZE>();
std::string cache_key = std::string("__boost_find_extrema_reduce_")
+ type_name<input_type>();
// load parameters
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
// Get preferred work group size
size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
work_group_size = (std::min)(max_work_group_size, work_group_size);
// local memory size needed to perform parallel reduction
size_t required_local_mem_size = 0;
// indices size
required_local_mem_size += sizeof(uint_) * work_group_size;
// values size
required_local_mem_size += sizeof(input_type) * work_group_size;
// at least 4 work groups per compute unit otherwise reduction
// would be highly inefficient
return ((required_local_mem_size * 4) <= local_mem_size);
}
/// \internal_
/// Algorithm finds the first extremum in given range, i.e., with the lowest
/// index.
///
/// If \p use_input_idx is false, it's assumed that input data is ordered by
/// increasing index and \p input_idx is not used in the algorithm.
template<class InputIterator, class ResultIterator, class Compare>
inline void find_extrema_with_reduce(InputIterator input,
vector<uint_>::iterator input_idx,
size_t count,
ResultIterator result,
vector<uint_>::iterator result_idx,
size_t work_groups_no,
size_t work_group_size,
Compare compare,
const bool find_minimum,
const bool use_input_idx,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
const context &context = queue.get_context();
meta_kernel k("find_extrema_reduce");
size_t count_arg = k.add_arg<uint_>("count");
size_t block_arg = k.add_arg<input_type *>(memory_object::local_memory, "block");
size_t block_idx_arg = k.add_arg<uint_ *>(memory_object::local_memory, "block_idx");
k <<
// Work item global id
k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
// Index of element that will be read from input buffer
k.decl<uint_>("idx") << " = gid;\n" <<
k.decl<input_type>("acc") << ";\n" <<
k.decl<uint_>("acc_idx") << ";\n" <<
"if(gid < count) {\n" <<
// Real index of currently best element
"#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
k.var<uint_>("acc_idx") << " = " << input_idx[k.var<uint_>("idx")] << ";\n" <<
"#else\n" <<
k.var<uint_>("acc_idx") << " = idx;\n" <<
"#endif\n" <<
// Init accumulator with first[get_global_id(0)]
"acc = " << input[k.var<uint_>("idx")] << ";\n" <<
"idx += get_global_size(0);\n" <<
"}\n" <<
k.decl<bool>("compare_result") << ";\n" <<
k.decl<bool>("equal") << ";\n\n" <<
"while( idx < count ){\n" <<
// Next element
k.decl<input_type>("next") << " = " << input[k.var<uint_>("idx")] << ";\n" <<
"#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
k.decl<uint_>("next_idx") << " = " << input_idx[k.var<uint_>("idx")] << ";\n" <<
"#endif\n" <<
// Comparison between currently best element (acc) and next element
"#ifdef BOOST_COMPUTE_FIND_MAXIMUM\n" <<
"compare_result = " << compare(k.var<input_type>("next"),
k.var<input_type>("acc")) << ";\n" <<
"# ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
"equal = !compare_result && !" <<
compare(k.var<input_type>("acc"),
k.var<input_type>("next")) << ";\n" <<
"# endif\n" <<
"#else\n" <<
"compare_result = " << compare(k.var<input_type>("acc"),
k.var<input_type>("next")) << ";\n" <<
"# ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
"equal = !compare_result && !" <<
compare(k.var<input_type>("next"),
k.var<input_type>("acc")) << ";\n" <<
"# endif\n" <<
"#endif\n" <<
// save the winner
"acc = compare_result ? acc : next;\n" <<
"#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
"acc_idx = compare_result ? " <<
"acc_idx : " <<
"(equal ? min(acc_idx, next_idx) : next_idx);\n" <<
"#else\n" <<
"acc_idx = compare_result ? acc_idx : idx;\n" <<
"#endif\n" <<
"idx += get_global_size(0);\n" <<
"}\n\n" <<
// Work item local id
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
"block[lid] = acc;\n" <<
"block_idx[lid] = acc_idx;\n" <<
"barrier(CLK_LOCAL_MEM_FENCE);\n" <<
k.decl<uint_>("group_offset") <<
" = count - (get_local_size(0) * get_group_id(0));\n\n";
k <<
"#pragma unroll\n"
"for(" << k.decl<uint_>("offset") << " = " << uint_(work_group_size) << " / 2; offset > 0; " <<
"offset = offset / 2) {\n" <<
"if((lid < offset) && ((lid + offset) < group_offset)) { \n" <<
k.decl<input_type>("mine") << " = block[lid];\n" <<
k.decl<input_type>("other") << " = block[lid+offset];\n" <<
"#ifdef BOOST_COMPUTE_FIND_MAXIMUM\n" <<
"compare_result = " << compare(k.var<input_type>("other"),
k.var<input_type>("mine")) << ";\n" <<
"equal = !compare_result && !" <<
compare(k.var<input_type>("mine"),
k.var<input_type>("other")) << ";\n" <<
"#else\n" <<
"compare_result = " << compare(k.var<input_type>("mine"),
k.var<input_type>("other")) << ";\n" <<
"equal = !compare_result && !" <<
compare(k.var<input_type>("other"),
k.var<input_type>("mine")) << ";\n" <<
"#endif\n" <<
"block[lid] = compare_result ? mine : other;\n" <<
k.decl<uint_>("mine_idx") << " = block_idx[lid];\n" <<
k.decl<uint_>("other_idx") << " = block_idx[lid+offset];\n" <<
"block_idx[lid] = compare_result ? " <<
"mine_idx : " <<
"(equal ? min(mine_idx, other_idx) : other_idx);\n" <<
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n" <<
"}\n\n" <<
// write block result to global output
"if(lid == 0){\n" <<
result[k.var<uint_>("get_group_id(0)")] << " = block[0];\n" <<
result_idx[k.var<uint_>("get_group_id(0)")] << " = block_idx[0];\n" <<
"}";
std::string options;
if(!find_minimum){
options = "-DBOOST_COMPUTE_FIND_MAXIMUM";
}
if(use_input_idx){
options += " -DBOOST_COMPUTE_USE_INPUT_IDX";
}
kernel kernel = k.compile(context, options);
kernel.set_arg(count_arg, static_cast<uint_>(count));
kernel.set_arg(block_arg, local_buffer<input_type>(work_group_size));
kernel.set_arg(block_idx_arg, local_buffer<uint_>(work_group_size));
queue.enqueue_1d_range_kernel(kernel,
0,
work_groups_no * work_group_size,
work_group_size);
}
template<class InputIterator, class ResultIterator, class Compare>
inline void find_extrema_with_reduce(InputIterator input,
size_t count,
ResultIterator result,
vector<uint_>::iterator result_idx,
size_t work_groups_no,
size_t work_group_size,
Compare compare,
const bool find_minimum,
command_queue &queue)
{
// dummy will not be used
buffer_iterator<uint_> dummy = result_idx;
return find_extrema_with_reduce(
input, dummy, count, result, result_idx, work_groups_no,
work_group_size, compare, find_minimum, false, queue
);
}
template<class InputIterator, class Compare>
InputIterator find_extrema_with_reduce(InputIterator first,
InputIterator last,
Compare compare,
const bool find_minimum,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
const context &context = queue.get_context();
const device &device = queue.get_device();
// Getting information about used queue and device
const size_t compute_units_no = device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
const size_t count = detail::iterator_range_size(first, last);
std::string cache_key = std::string("__boost_find_extrema_with_reduce_")
+ type_name<input_type>();
// load parameters
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
// get preferred work group size and preferred number
// of work groups per compute unit
size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
size_t work_groups_per_cu = parameters->get(cache_key, "wgpcu", 100);
// calculate work group size and number of work groups
work_group_size = (std::min)(max_work_group_size, work_group_size);
size_t work_groups_no = compute_units_no * work_groups_per_cu;
work_groups_no = (std::min)(
work_groups_no,
static_cast<size_t>(std::ceil(float(count) / work_group_size))
);
// phase I: finding candidates for extremum
// device buffors for extremum candidates and their indices
// each work-group computes its candidate
vector<input_type> candidates(work_groups_no, context);
vector<uint_> candidates_idx(work_groups_no, context);
// finding candidates for first extremum and their indices
find_extrema_with_reduce(
first, count, candidates.begin(), candidates_idx.begin(),
work_groups_no, work_group_size, compare, find_minimum, queue
);
// phase II: finding extremum from among the candidates
// zero-copy buffers for final result (value and index)
vector<input_type, ::boost::compute::pinned_allocator<input_type> >
result(1, context);
vector<uint_, ::boost::compute::pinned_allocator<uint_> >
result_idx(1, context);
// get extremum from among the candidates
find_extrema_with_reduce(
candidates.begin(), candidates_idx.begin(), work_groups_no, result.begin(),
result_idx.begin(), 1, work_group_size, compare, find_minimum, true, queue
);
// mapping extremum index to host
uint_* result_idx_host_ptr =
static_cast<uint_*>(
queue.enqueue_map_buffer(
result_idx.get_buffer(), command_queue::map_read,
0, sizeof(uint_)
)
);
return first + static_cast<difference_type>(*result_idx_host_ptr);
}
template<class InputIterator>
InputIterator find_extrema_with_reduce(InputIterator first,
InputIterator last,
::boost::compute::less<
typename std::iterator_traits<
InputIterator
>::value_type
>
compare,
const bool find_minimum,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
typedef typename std::iterator_traits<InputIterator>::value_type input_type;
const context &context = queue.get_context();
const device &device = queue.get_device();
// Getting information about used queue and device
const size_t compute_units_no = device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
const size_t count = detail::iterator_range_size(first, last);
std::string cache_key = std::string("__boost_find_extrema_with_reduce_")
+ type_name<input_type>();
// load parameters
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
// get preferred work group size and preferred number
// of work groups per compute unit
size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
size_t work_groups_per_cu = parameters->get(cache_key, "wgpcu", 64);
// calculate work group size and number of work groups
work_group_size = (std::min)(max_work_group_size, work_group_size);
size_t work_groups_no = compute_units_no * work_groups_per_cu;
work_groups_no = (std::min)(
work_groups_no,
static_cast<size_t>(std::ceil(float(count) / work_group_size))
);
// phase I: finding candidates for extremum
// device buffors for extremum candidates and their indices
// each work-group computes its candidate
// zero-copy buffers are used to eliminate copying data back to host
vector<input_type, ::boost::compute::pinned_allocator<input_type> >
candidates(work_groups_no, context);
vector<uint_, ::boost::compute::pinned_allocator <uint_> >
candidates_idx(work_groups_no, context);
// finding candidates for first extremum and their indices
find_extrema_with_reduce(
first, count, candidates.begin(), candidates_idx.begin(),
work_groups_no, work_group_size, compare, find_minimum, queue
);
// phase II: finding extremum from among the candidates
// mapping candidates and their indices to host
input_type* candidates_host_ptr =
static_cast<input_type*>(
queue.enqueue_map_buffer(
candidates.get_buffer(), command_queue::map_read,
0, work_groups_no * sizeof(input_type)
)
);
uint_* candidates_idx_host_ptr =
static_cast<uint_*>(
queue.enqueue_map_buffer(
candidates_idx.get_buffer(), command_queue::map_read,
0, work_groups_no * sizeof(uint_)
)
);
input_type* i = candidates_host_ptr;
uint_* idx = candidates_idx_host_ptr;
uint_* extremum_idx = idx;
input_type extremum = *candidates_host_ptr;
i++; idx++;
// find extremum (serial) from among the candidates on host
if(!find_minimum) {
while(idx != (candidates_idx_host_ptr + work_groups_no)) {
input_type next = *i;
bool compare_result = next > extremum;
bool equal = next == extremum;
extremum = compare_result ? next : extremum;
extremum_idx = compare_result ? idx : extremum_idx;
extremum_idx = equal ? ((*extremum_idx < *idx) ? extremum_idx : idx) : extremum_idx;
idx++, i++;
}
}
else {
while(idx != (candidates_idx_host_ptr + work_groups_no)) {
input_type next = *i;
bool compare_result = next < extremum;
bool equal = next == extremum;
extremum = compare_result ? next : extremum;
extremum_idx = compare_result ? idx : extremum_idx;
extremum_idx = equal ? ((*extremum_idx < *idx) ? extremum_idx : idx) : extremum_idx;
idx++, i++;
}
}
return first + static_cast<difference_type>(*extremum_idx);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP