590 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			590 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_JY_HPP | ||
|  | #define BOOST_MATH_BESSEL_JY_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/tools/config.hpp> | ||
|  | #include <boost/math/special_functions/gamma.hpp> | ||
|  | #include <boost/math/special_functions/sign.hpp> | ||
|  | #include <boost/math/special_functions/hypot.hpp> | ||
|  | #include <boost/math/special_functions/sin_pi.hpp> | ||
|  | #include <boost/math/special_functions/cos_pi.hpp> | ||
|  | #include <boost/math/special_functions/detail/bessel_jy_asym.hpp> | ||
|  | #include <boost/math/special_functions/detail/bessel_jy_series.hpp> | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/mpl/if.hpp> | ||
|  | #include <boost/type_traits/is_floating_point.hpp> | ||
|  | #include <complex> | ||
|  | 
 | ||
|  | // Bessel functions of the first and second kind of fractional order | ||
|  | 
 | ||
|  | namespace boost { namespace math { | ||
|  | 
 | ||
|  |    namespace detail { | ||
|  | 
 | ||
|  |       // | ||
|  |       // Simultaneous calculation of A&S 9.2.9 and 9.2.10 | ||
|  |       // for use in A&S 9.2.5 and 9.2.6. | ||
|  |       // This series is quick to evaluate, but divergent unless | ||
|  |       // x is very large, in fact it's pretty hard to figure out | ||
|  |       // with any degree of precision when this series actually  | ||
|  |       // *will* converge!!  Consequently, we may just have to | ||
|  |       // try it and see... | ||
|  |       // | ||
|  |       template <class T, class Policy> | ||
|  |       bool hankel_PQ(T v, T x, T* p, T* q, const Policy& ) | ||
|  |       { | ||
|  |          BOOST_MATH_STD_USING | ||
|  |             T tolerance = 2 * policies::get_epsilon<T, Policy>(); | ||
|  |          *p = 1; | ||
|  |          *q = 0; | ||
|  |          T k = 1; | ||
|  |          T z8 = 8 * x; | ||
|  |          T sq = 1; | ||
|  |          T mu = 4 * v * v; | ||
|  |          T term = 1; | ||
|  |          bool ok = true; | ||
|  |          do | ||
|  |          { | ||
|  |             term *= (mu - sq * sq) / (k * z8); | ||
|  |             *q += term; | ||
|  |             k += 1; | ||
|  |             sq += 2; | ||
|  |             T mult = (sq * sq - mu) / (k * z8); | ||
|  |             ok = fabs(mult) < 0.5f; | ||
|  |             term *= mult; | ||
|  |             *p += term; | ||
|  |             k += 1; | ||
|  |             sq += 2; | ||
|  |          } | ||
|  |          while((fabs(term) > tolerance * *p) && ok); | ||
|  |          return ok; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see | ||
|  |       // Temme, Journal of Computational Physics, vol 21, 343 (1976) | ||
|  |       template <typename T, typename Policy> | ||
|  |       int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol) | ||
|  |       { | ||
|  |          T g, h, p, q, f, coef, sum, sum1, tolerance; | ||
|  |          T a, d, e, sigma; | ||
|  |          unsigned long k; | ||
|  | 
 | ||
|  |          BOOST_MATH_STD_USING | ||
|  |             using namespace boost::math::tools; | ||
|  |          using namespace boost::math::constants; | ||
|  | 
 | ||
|  |          BOOST_ASSERT(fabs(v) <= 0.5f);  // precondition for using this routine | ||
|  | 
 | ||
|  |          T gp = boost::math::tgamma1pm1(v, pol); | ||
|  |          T gm = boost::math::tgamma1pm1(-v, pol); | ||
|  |          T spv = boost::math::sin_pi(v, pol); | ||
|  |          T spv2 = boost::math::sin_pi(v/2, pol); | ||
|  |          T xp = pow(x/2, v); | ||
|  | 
 | ||
|  |          a = log(x / 2); | ||
|  |          sigma = -a * v; | ||
|  |          d = abs(sigma) < tools::epsilon<T>() ? | ||
|  |             T(1) : sinh(sigma) / sigma; | ||
|  |          e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2) | ||
|  |             : T(2 * spv2 * spv2 / v); | ||
|  | 
 | ||
|  |          T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v)); | ||
|  |          T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2); | ||
|  |          T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv); | ||
|  |          f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv; | ||
|  | 
 | ||
|  |          p = vspv / (xp * (1 + gm)); | ||
|  |          q = vspv * xp / (1 + gp); | ||
|  | 
 | ||
|  |          g = f + e * q; | ||
|  |          h = p; | ||
|  |          coef = 1; | ||
|  |          sum = coef * g; | ||
|  |          sum1 = coef * h; | ||
|  | 
 | ||
|  |          T v2 = v * v; | ||
|  |          T coef_mult = -x * x / 4; | ||
|  | 
 | ||
|  |          // series summation | ||
|  |          tolerance = policies::get_epsilon<T, Policy>(); | ||
|  |          for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++) | ||
|  |          { | ||
|  |             f = (k * f + p + q) / (k*k - v2); | ||
|  |             p /= k - v; | ||
|  |             q /= k + v; | ||
|  |             g = f + e * q; | ||
|  |             h = p - k * g; | ||
|  |             coef *= coef_mult / k; | ||
|  |             sum += coef * g; | ||
|  |             sum1 += coef * h; | ||
|  |             if (abs(coef * g) < abs(sum) * tolerance)  | ||
|  |             {  | ||
|  |                break;  | ||
|  |             } | ||
|  |          } | ||
|  |          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol); | ||
|  |          *Y = -sum; | ||
|  |          *Y1 = -2 * sum1 / x; | ||
|  | 
 | ||
|  |          return 0; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Evaluate continued fraction fv = J_(v+1) / J_v, see | ||
|  |       // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 | ||
|  |       template <typename T, typename Policy> | ||
|  |       int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol) | ||
|  |       { | ||
|  |          T C, D, f, a, b, delta, tiny, tolerance; | ||
|  |          unsigned long k; | ||
|  |          int s = 1; | ||
|  | 
 | ||
|  |          BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |             // |x| <= |v|, CF1_jy converges rapidly | ||
|  |             // |x| > |v|, CF1_jy needs O(|x|) iterations to converge | ||
|  | 
 | ||
|  |             // modified Lentz's method, see | ||
|  |             // Lentz, Applied Optics, vol 15, 668 (1976) | ||
|  |             tolerance = 2 * policies::get_epsilon<T, Policy>();; | ||
|  |          tiny = sqrt(tools::min_value<T>()); | ||
|  |          C = f = tiny;                           // b0 = 0, replace with tiny | ||
|  |          D = 0; | ||
|  |          for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++) | ||
|  |          { | ||
|  |             a = -1; | ||
|  |             b = 2 * (v + k) / x; | ||
|  |             C = b + a / C; | ||
|  |             D = b + a * D; | ||
|  |             if (C == 0) { C = tiny; } | ||
|  |             if (D == 0) { D = tiny; } | ||
|  |             D = 1 / D; | ||
|  |             delta = C * D; | ||
|  |             f *= delta; | ||
|  |             if (D < 0) { s = -s; } | ||
|  |             if (abs(delta - 1) < tolerance)  | ||
|  |             { break; } | ||
|  |          } | ||
|  |          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol); | ||
|  |          *fv = -f; | ||
|  |          *sign = s;                              // sign of denominator | ||
|  | 
 | ||
|  |          return 0; | ||
|  |       } | ||
|  |       // | ||
|  |       // This algorithm was originally written by Xiaogang Zhang | ||
|  |       // using std::complex to perform the complex arithmetic. | ||
|  |       // However, that turns out to 10x or more slower than using | ||
|  |       // all real-valued arithmetic, so it's been rewritten using | ||
|  |       // real values only. | ||
|  |       // | ||
|  |       template <typename T, typename Policy> | ||
|  |       int CF2_jy(T v, T x, T* p, T* q, const Policy& pol) | ||
|  |       { | ||
|  |          BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |             T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp; | ||
|  |          T tiny; | ||
|  |          unsigned long k; | ||
|  | 
 | ||
|  |          // |x| >= |v|, CF2_jy converges rapidly | ||
|  |          // |x| -> 0, CF2_jy fails to converge | ||
|  |          BOOST_ASSERT(fabs(x) > 1); | ||
|  | 
 | ||
|  |          // modified Lentz's method, complex numbers involved, see | ||
|  |          // Lentz, Applied Optics, vol 15, 668 (1976) | ||
|  |          T tolerance = 2 * policies::get_epsilon<T, Policy>(); | ||
|  |          tiny = sqrt(tools::min_value<T>()); | ||
|  |          Cr = fr = -0.5f / x; | ||
|  |          Ci = fi = 1; | ||
|  |          //Dr = Di = 0; | ||
|  |          T v2 = v * v; | ||
|  |          a = (0.25f - v2) / x; // Note complex this one time only! | ||
|  |          br = 2 * x; | ||
|  |          bi = 2; | ||
|  |          temp = Cr * Cr + 1; | ||
|  |          Ci = bi + a * Cr / temp; | ||
|  |          Cr = br + a / temp; | ||
|  |          Dr = br; | ||
|  |          Di = bi; | ||
|  |          if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } | ||
|  |          if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } | ||
|  |          temp = Dr * Dr + Di * Di; | ||
|  |          Dr = Dr / temp; | ||
|  |          Di = -Di / temp; | ||
|  |          delta_r = Cr * Dr - Ci * Di; | ||
|  |          delta_i = Ci * Dr + Cr * Di; | ||
|  |          temp = fr; | ||
|  |          fr = temp * delta_r - fi * delta_i; | ||
|  |          fi = temp * delta_i + fi * delta_r; | ||
|  |          for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++) | ||
|  |          { | ||
|  |             a = k - 0.5f; | ||
|  |             a *= a; | ||
|  |             a -= v2; | ||
|  |             bi += 2; | ||
|  |             temp = Cr * Cr + Ci * Ci; | ||
|  |             Cr = br + a * Cr / temp; | ||
|  |             Ci = bi - a * Ci / temp; | ||
|  |             Dr = br + a * Dr; | ||
|  |             Di = bi + a * Di; | ||
|  |             if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } | ||
|  |             if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } | ||
|  |             temp = Dr * Dr + Di * Di; | ||
|  |             Dr = Dr / temp; | ||
|  |             Di = -Di / temp; | ||
|  |             delta_r = Cr * Dr - Ci * Di; | ||
|  |             delta_i = Ci * Dr + Cr * Di; | ||
|  |             temp = fr; | ||
|  |             fr = temp * delta_r - fi * delta_i; | ||
|  |             fi = temp * delta_i + fi * delta_r; | ||
|  |             if (fabs(delta_r - 1) + fabs(delta_i) < tolerance) | ||
|  |                break; | ||
|  |          } | ||
|  |          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol); | ||
|  |          *p = fr; | ||
|  |          *q = fi; | ||
|  | 
 | ||
|  |          return 0; | ||
|  |       } | ||
|  | 
 | ||
|  |       static const int need_j = 1; | ||
|  |       static const int need_y = 2; | ||
|  | 
 | ||
|  |       // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see | ||
|  |       // Barnett et al, Computer Physics Communications, vol 8, 377 (1974) | ||
|  |       template <typename T, typename Policy> | ||
|  |       int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol) | ||
|  |       { | ||
|  |          BOOST_ASSERT(x >= 0); | ||
|  | 
 | ||
|  |          T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu; | ||
|  |          T W, p, q, gamma, current, prev, next; | ||
|  |          bool reflect = false; | ||
|  |          unsigned n, k; | ||
|  |          int s; | ||
|  |          int org_kind = kind; | ||
|  |          T cp = 0; | ||
|  |          T sp = 0; | ||
|  | 
 | ||
|  |          static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)"; | ||
|  | 
 | ||
|  |          BOOST_MATH_STD_USING | ||
|  |             using namespace boost::math::tools; | ||
|  |          using namespace boost::math::constants; | ||
|  | 
 | ||
|  |          if (v < 0) | ||
|  |          { | ||
|  |             reflect = true; | ||
|  |             v = -v;                             // v is non-negative from here | ||
|  |          } | ||
|  |          if (v > static_cast<T>((std::numeric_limits<int>::max)())) | ||
|  |          { | ||
|  |             *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%", v, pol); | ||
|  |             return 1; | ||
|  |          } | ||
|  |          n = iround(v, pol); | ||
|  |          u = v - n;                              // -1/2 <= u < 1/2 | ||
|  | 
 | ||
|  |          if(reflect) | ||
|  |          { | ||
|  |             T z = (u + n % 2); | ||
|  |             cp = boost::math::cos_pi(z, pol); | ||
|  |             sp = boost::math::sin_pi(z, pol); | ||
|  |             if(u != 0) | ||
|  |                kind = need_j|need_y;               // need both for reflection formula | ||
|  |          } | ||
|  | 
 | ||
|  |          if(x == 0) | ||
|  |          { | ||
|  |             if(v == 0) | ||
|  |                *J = 1; | ||
|  |             else if((u == 0) || !reflect) | ||
|  |                *J = 0; | ||
|  |             else if(kind & need_j) | ||
|  |                *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%", x, pol); // complex infinity | ||
|  |             else | ||
|  |                *J = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using J. | ||
|  | 
 | ||
|  |             if((kind & need_y) == 0) | ||
|  |                *Y = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using Y. | ||
|  |             else if(v == 0) | ||
|  |                *Y = -policies::raise_overflow_error<T>(function, 0, pol); | ||
|  |             else | ||
|  |                *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%", x, pol); // complex infinity | ||
|  |             return 1; | ||
|  |          } | ||
|  | 
 | ||
|  |          // x is positive until reflection | ||
|  |          W = T(2) / (x * pi<T>());               // Wronskian | ||
|  |          T Yv_scale = 1; | ||
|  |          if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5))) | ||
|  |          { | ||
|  |             // | ||
|  |             // This series will actually converge rapidly for all small | ||
|  |             // x - say up to x < 20 - but the first few terms are large | ||
|  |             // and divergent which leads to large errors :-( | ||
|  |             // | ||
|  |             Jv = bessel_j_small_z_series(v, x, pol); | ||
|  |             Yv = std::numeric_limits<T>::quiet_NaN(); | ||
|  |          } | ||
|  |          else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v))) | ||
|  |          { | ||
|  |             // Evaluate using series representations. | ||
|  |             // This is particularly important for x << v as in this | ||
|  |             // area temme_jy may be slow to converge, if it converges at all. | ||
|  |             // Requires x is not an integer. | ||
|  |             if(kind&need_j) | ||
|  |                Jv = bessel_j_small_z_series(v, x, pol); | ||
|  |             else | ||
|  |                Jv = std::numeric_limits<T>::quiet_NaN(); | ||
|  |             if((org_kind&need_y && (!reflect || (cp != 0)))  | ||
|  |                || (org_kind & need_j && (reflect && (sp != 0)))) | ||
|  |             { | ||
|  |                // Only calculate if we need it, and if the reflection formula will actually use it: | ||
|  |                Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol); | ||
|  |             } | ||
|  |             else | ||
|  |                Yv = std::numeric_limits<T>::quiet_NaN(); | ||
|  |          } | ||
|  |          else if((u == 0) && (x < policies::get_epsilon<T, Policy>())) | ||
|  |          { | ||
|  |             // Truncated series evaluation for small x and v an integer, | ||
|  |             // much quicker in this area than temme_jy below. | ||
|  |             if(kind&need_j) | ||
|  |                Jv = bessel_j_small_z_series(v, x, pol); | ||
|  |             else | ||
|  |                Jv = std::numeric_limits<T>::quiet_NaN(); | ||
|  |             if((org_kind&need_y && (!reflect || (cp != 0)))  | ||
|  |                || (org_kind & need_j && (reflect && (sp != 0)))) | ||
|  |             { | ||
|  |                // Only calculate if we need it, and if the reflection formula will actually use it: | ||
|  |                Yv = bessel_yn_small_z(n, x, &Yv_scale, pol); | ||
|  |             } | ||
|  |             else | ||
|  |                Yv = std::numeric_limits<T>::quiet_NaN(); | ||
|  |          } | ||
|  |          else if(asymptotic_bessel_large_x_limit(v, x)) | ||
|  |          { | ||
|  |             if(kind&need_y) | ||
|  |             { | ||
|  |                Yv = asymptotic_bessel_y_large_x_2(v, x); | ||
|  |             } | ||
|  |             else | ||
|  |                Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. | ||
|  |             if(kind&need_j) | ||
|  |             { | ||
|  |                Jv = asymptotic_bessel_j_large_x_2(v, x); | ||
|  |             } | ||
|  |             else | ||
|  |                Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. | ||
|  |          } | ||
|  |          else if((x > 8) && hankel_PQ(v, x, &p, &q, pol)) | ||
|  |          { | ||
|  |             // | ||
|  |             // Hankel approximation: note that this method works best when x  | ||
|  |             // is large, but in that case we end up calculating sines and cosines | ||
|  |             // of large values, with horrendous resulting accuracy.  It is fast though | ||
|  |             // when it works.... | ||
|  |             // | ||
|  |             // Normally we calculate sin/cos(chi) where: | ||
|  |             // | ||
|  |             // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>(); | ||
|  |             // | ||
|  |             // But this introduces large errors, so use sin/cos addition formulae to | ||
|  |             // improve accuracy: | ||
|  |             // | ||
|  |             T mod_v = fmod(T(v / 2 + 0.25f), T(2)); | ||
|  |             T sx = sin(x); | ||
|  |             T cx = cos(x); | ||
|  |             T sv = sin_pi(mod_v); | ||
|  |             T cv = cos_pi(mod_v); | ||
|  | 
 | ||
|  |             T sc = sx * cv - sv * cx; // == sin(chi); | ||
|  |             T cc = cx * cv + sx * sv; // == cos(chi); | ||
|  |             T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x)); | ||
|  |             Yv = chi * (p * sc + q * cc); | ||
|  |             Jv = chi * (p * cc - q * sc); | ||
|  |          } | ||
|  |          else if (x <= 2)                           // x in (0, 2] | ||
|  |          { | ||
|  |             if(temme_jy(u, x, &Yu, &Yu1, pol))             // Temme series | ||
|  |             { | ||
|  |                // domain error: | ||
|  |                *J = *Y = Yu; | ||
|  |                return 1; | ||
|  |             } | ||
|  |             prev = Yu; | ||
|  |             current = Yu1; | ||
|  |             T scale = 1; | ||
|  |             policies::check_series_iterations<T>(function, n, pol); | ||
|  |             for (k = 1; k <= n; k++)            // forward recurrence for Y | ||
|  |             { | ||
|  |                T fact = 2 * (u + k) / x; | ||
|  |                if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) | ||
|  |                { | ||
|  |                   scale /= current; | ||
|  |                   prev /= current; | ||
|  |                   current = 1; | ||
|  |                } | ||
|  |                next = fact * current - prev; | ||
|  |                prev = current; | ||
|  |                current = next; | ||
|  |             } | ||
|  |             Yv = prev; | ||
|  |             Yv1 = current; | ||
|  |             if(kind&need_j) | ||
|  |             { | ||
|  |                CF1_jy(v, x, &fv, &s, pol);                 // continued fraction CF1_jy | ||
|  |                Jv = scale * W / (Yv * fv - Yv1);           // Wronskian relation | ||
|  |             } | ||
|  |             else | ||
|  |                Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. | ||
|  |             Yv_scale = scale; | ||
|  |          } | ||
|  |          else                                    // x in (2, \infty) | ||
|  |          { | ||
|  |             // Get Y(u, x): | ||
|  | 
 | ||
|  |             T ratio; | ||
|  |             CF1_jy(v, x, &fv, &s, pol); | ||
|  |             // tiny initial value to prevent overflow | ||
|  |             T init = sqrt(tools::min_value<T>()); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(init); | ||
|  |             prev = fv * s * init; | ||
|  |             current = s * init; | ||
|  |             if(v < max_factorial<T>::value) | ||
|  |             { | ||
|  |                policies::check_series_iterations<T>(function, n, pol); | ||
|  |                for (k = n; k > 0; k--)             // backward recurrence for J | ||
|  |                { | ||
|  |                   next = 2 * (u + k) * current / x - prev; | ||
|  |                   prev = current; | ||
|  |                   current = next; | ||
|  |                } | ||
|  |                ratio = (s * init) / current;     // scaling ratio | ||
|  |                // can also call CF1_jy() to get fu, not much difference in precision | ||
|  |                fu = prev / current; | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                // | ||
|  |                // When v is large we may get overflow in this calculation | ||
|  |                // leading to NaN's and other nasty surprises: | ||
|  |                // | ||
|  |                policies::check_series_iterations<T>(function, n, pol); | ||
|  |                bool over = false; | ||
|  |                for (k = n; k > 0; k--)             // backward recurrence for J | ||
|  |                { | ||
|  |                   T t = 2 * (u + k) / x; | ||
|  |                   if((t > 1) && (tools::max_value<T>() / t < current)) | ||
|  |                   { | ||
|  |                      over = true; | ||
|  |                      break; | ||
|  |                   } | ||
|  |                   next = t * current - prev; | ||
|  |                   prev = current; | ||
|  |                   current = next; | ||
|  |                } | ||
|  |                if(!over) | ||
|  |                { | ||
|  |                   ratio = (s * init) / current;     // scaling ratio | ||
|  |                   // can also call CF1_jy() to get fu, not much difference in precision | ||
|  |                   fu = prev / current; | ||
|  |                } | ||
|  |                else | ||
|  |                { | ||
|  |                   ratio = 0; | ||
|  |                   fu = 1; | ||
|  |                } | ||
|  |             } | ||
|  |             CF2_jy(u, x, &p, &q, pol);                  // continued fraction CF2_jy | ||
|  |             T t = u / x - fu;                   // t = J'/J | ||
|  |             gamma = (p - t) / q; | ||
|  |             // | ||
|  |             // We can't allow gamma to cancel out to zero competely as it messes up | ||
|  |             // the subsequent logic.  So pretend that one bit didn't cancel out | ||
|  |             // and set to a suitably small value.  The only test case we've been able to | ||
|  |             // find for this, is when v = 8.5 and x = 4*PI. | ||
|  |             // | ||
|  |             if(gamma == 0) | ||
|  |             { | ||
|  |                gamma = u * tools::epsilon<T>() / x; | ||
|  |             } | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(current); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(W); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(q); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(gamma); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(p); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(t); | ||
|  |             Ju = sign(current) * sqrt(W / (q + gamma * (p - t))); | ||
|  |             BOOST_MATH_INSTRUMENT_VARIABLE(Ju); | ||
|  | 
 | ||
|  |             Jv = Ju * ratio;                    // normalization | ||
|  | 
 | ||
|  |             Yu = gamma * Ju; | ||
|  |             Yu1 = Yu * (u/x - p - q/gamma); | ||
|  | 
 | ||
|  |             if(kind&need_y) | ||
|  |             { | ||
|  |                // compute Y: | ||
|  |                prev = Yu; | ||
|  |                current = Yu1; | ||
|  |                policies::check_series_iterations<T>(function, n, pol); | ||
|  |                for (k = 1; k <= n; k++)            // forward recurrence for Y | ||
|  |                { | ||
|  |                   T fact = 2 * (u + k) / x; | ||
|  |                   if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) | ||
|  |                   { | ||
|  |                      prev /= current; | ||
|  |                      Yv_scale /= current; | ||
|  |                      current = 1; | ||
|  |                   } | ||
|  |                   next = fact * current - prev; | ||
|  |                   prev = current; | ||
|  |                   current = next; | ||
|  |                } | ||
|  |                Yv = prev; | ||
|  |             } | ||
|  |             else | ||
|  |                Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. | ||
|  |          } | ||
|  | 
 | ||
|  |          if (reflect) | ||
|  |          { | ||
|  |             if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv))) | ||
|  |                *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); | ||
|  |             else | ||
|  |                *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale));     // reflection formula | ||
|  |             if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv))) | ||
|  |                *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); | ||
|  |             else | ||
|  |                *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale)); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             *J = Jv; | ||
|  |             if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv)) | ||
|  |                *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); | ||
|  |             else | ||
|  |                *Y = Yv / Yv_scale; | ||
|  |          } | ||
|  | 
 | ||
|  |          return 0; | ||
|  |       } | ||
|  | 
 | ||
|  |    } // namespace detail | ||
|  | 
 | ||
|  | }} // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_JY_HPP | ||
|  | 
 |