75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2015 John Maddock | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | // | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_ELLINT_JZ_HPP | ||
|  | #define BOOST_MATH_ELLINT_JZ_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/math_fwd.hpp> | ||
|  | #include <boost/math/special_functions/ellint_1.hpp> | ||
|  | #include <boost/math/special_functions/ellint_rj.hpp> | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/math/tools/workaround.hpp> | ||
|  | 
 | ||
|  | // Elliptic integral the Jacobi Zeta function. | ||
|  | 
 | ||
|  | namespace boost { namespace math {  | ||
|  |     | ||
|  | namespace detail{ | ||
|  | 
 | ||
|  | // Elliptic integral - Jacobi Zeta | ||
|  | template <typename T, typename Policy> | ||
|  | T jacobi_zeta_imp(T phi, T k, const Policy& pol) | ||
|  | { | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  |     using namespace boost::math::constants; | ||
|  | 
 | ||
|  |     bool invert = false; | ||
|  |     if(phi < 0) | ||
|  |     { | ||
|  |        phi = fabs(phi); | ||
|  |        invert = true; | ||
|  |     } | ||
|  | 
 | ||
|  |     T result; | ||
|  |     T sinp = sin(phi); | ||
|  |     T cosp = cos(phi); | ||
|  |     T s2 = sinp * sinp; | ||
|  |     T k2 = k * k; | ||
|  |     T kp = 1 - k2; | ||
|  |     if(k == 1) | ||
|  |        result = sinp * (boost::math::sign)(cosp);  // We get here by simplifying JacobiZeta[w, 1] in Mathematica, and the fact that 0 <= phi. | ||
|  |     else | ||
|  |        result = k2 * sinp * cosp * sqrt(1 - k2 * s2) * ellint_rj_imp(T(0), kp, T(1), T(1 - k2 * s2), pol) / (3 * ellint_k_imp(k, pol)); | ||
|  |     return invert ? T(-result) : result; | ||
|  | } | ||
|  | 
 | ||
|  | } // detail | ||
|  | 
 | ||
|  | template <class T1, class T2, class Policy> | ||
|  | inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi, const Policy& pol) | ||
|  | { | ||
|  |    typedef typename tools::promote_args<T1, T2>::type result_type; | ||
|  |    typedef typename policies::evaluation<result_type, Policy>::type value_type; | ||
|  |    return policies::checked_narrowing_cast<result_type, Policy>(detail::jacobi_zeta_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::jacobi_zeta<%1%>(%1%,%1%)"); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T1, class T2> | ||
|  | inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi) | ||
|  | { | ||
|  |    return boost::math::jacobi_zeta(k, phi, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | }} // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_ELLINT_D_HPP | ||
|  | 
 |