1156 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			1156 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  (C) Copyright John Maddock 2006. | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_SPECIAL_ERF_HPP | ||
|  | #define BOOST_MATH_SPECIAL_ERF_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/math_fwd.hpp> | ||
|  | #include <boost/math/tools/config.hpp> | ||
|  | #include <boost/math/special_functions/gamma.hpp> | ||
|  | #include <boost/math/tools/roots.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ | ||
|  | 
 | ||
|  | namespace detail | ||
|  | { | ||
|  | 
 | ||
|  | // | ||
|  | // Asymptotic series for large z: | ||
|  | // | ||
|  | template <class T> | ||
|  | struct erf_asympt_series_t | ||
|  | { | ||
|  |    erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1) | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>()); | ||
|  |       result /= z; | ||
|  |    } | ||
|  | 
 | ||
|  |    typedef T result_type; | ||
|  | 
 | ||
|  |    T operator()() | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       T r = result; | ||
|  |       result *= tk / xx; | ||
|  |       tk += 2; | ||
|  |       if( fabs(r) < fabs(result)) | ||
|  |          result = 0; | ||
|  |       return r; | ||
|  |    } | ||
|  | private: | ||
|  |    T result; | ||
|  |    T xx; | ||
|  |    int tk; | ||
|  | }; | ||
|  | // | ||
|  | // How large z has to be in order to ensure that the series converges: | ||
|  | // | ||
|  | template <class T> | ||
|  | inline float erf_asymptotic_limit_N(const T&) | ||
|  | { | ||
|  |    return (std::numeric_limits<float>::max)(); | ||
|  | } | ||
|  | inline float erf_asymptotic_limit_N(const mpl::int_<24>&) | ||
|  | { | ||
|  |    return 2.8F; | ||
|  | } | ||
|  | inline float erf_asymptotic_limit_N(const mpl::int_<53>&) | ||
|  | { | ||
|  |    return 4.3F; | ||
|  | } | ||
|  | inline float erf_asymptotic_limit_N(const mpl::int_<64>&) | ||
|  | { | ||
|  |    return 4.8F; | ||
|  | } | ||
|  | inline float erf_asymptotic_limit_N(const mpl::int_<106>&) | ||
|  | { | ||
|  |    return 6.5F; | ||
|  | } | ||
|  | inline float erf_asymptotic_limit_N(const mpl::int_<113>&) | ||
|  | { | ||
|  |    return 6.8F; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline T erf_asymptotic_limit() | ||
|  | { | ||
|  |    typedef typename policies::precision<T, Policy>::type precision_type; | ||
|  |    typedef typename mpl::if_< | ||
|  |       mpl::less_equal<precision_type, mpl::int_<24> >, | ||
|  |       typename mpl::if_< | ||
|  |          mpl::less_equal<precision_type, mpl::int_<0> >, | ||
|  |          mpl::int_<0>, | ||
|  |          mpl::int_<24> | ||
|  |       >::type, | ||
|  |       typename mpl::if_< | ||
|  |          mpl::less_equal<precision_type, mpl::int_<53> >, | ||
|  |          mpl::int_<53>, | ||
|  |          typename mpl::if_< | ||
|  |             mpl::less_equal<precision_type, mpl::int_<64> >, | ||
|  |             mpl::int_<64>, | ||
|  |             typename mpl::if_< | ||
|  |                mpl::less_equal<precision_type, mpl::int_<106> >, | ||
|  |                mpl::int_<106>, | ||
|  |                typename mpl::if_< | ||
|  |                   mpl::less_equal<precision_type, mpl::int_<113> >, | ||
|  |                   mpl::int_<113>, | ||
|  |                   mpl::int_<0> | ||
|  |                >::type | ||
|  |             >::type | ||
|  |          >::type | ||
|  |       >::type | ||
|  |    >::type tag_type; | ||
|  |    return erf_asymptotic_limit_N(tag_type()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy, class Tag> | ||
|  | T erf_imp(T z, bool invert, const Policy& pol, const Tag& t) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called"); | ||
|  | 
 | ||
|  |    if(z < 0) | ||
|  |    { | ||
|  |       if(!invert) | ||
|  |          return -erf_imp(T(-z), invert, pol, t); | ||
|  |       else | ||
|  |          return 1 + erf_imp(T(-z), false, pol, t); | ||
|  |    } | ||
|  | 
 | ||
|  |    T result; | ||
|  | 
 | ||
|  |    if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>())) | ||
|  |    { | ||
|  |       detail::erf_asympt_series_t<T> s(z); | ||
|  |       boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); | ||
|  |       result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1); | ||
|  |       policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol); | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       T x = z * z; | ||
|  |       if(x < 0.6) | ||
|  |       { | ||
|  |          // Compute P: | ||
|  |          result = z * exp(-x); | ||
|  |          result /= sqrt(boost::math::constants::pi<T>()); | ||
|  |          if(result != 0) | ||
|  |             result *= 2 * detail::lower_gamma_series(T(0.5f), x, pol); | ||
|  |       } | ||
|  |       else if(x < 1.1f) | ||
|  |       { | ||
|  |          // Compute Q: | ||
|  |          invert = !invert; | ||
|  |          result = tgamma_small_upper_part(T(0.5f), x, pol); | ||
|  |          result /= sqrt(boost::math::constants::pi<T>()); | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Compute Q: | ||
|  |          invert = !invert; | ||
|  |          result = z * exp(-x); | ||
|  |          result /= sqrt(boost::math::constants::pi<T>()); | ||
|  |          result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>()); | ||
|  |       } | ||
|  |    } | ||
|  |    if(invert) | ||
|  |       result = 1 - result; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<53>& t) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called"); | ||
|  | 
 | ||
|  |    if(z < 0) | ||
|  |    { | ||
|  |       if(!invert) | ||
|  |          return -erf_imp(T(-z), invert, pol, t); | ||
|  |       else if(z < -0.5) | ||
|  |          return 2 - erf_imp(T(-z), invert, pol, t); | ||
|  |       else | ||
|  |          return 1 + erf_imp(T(-z), false, pol, t); | ||
|  |    } | ||
|  | 
 | ||
|  |    T result; | ||
|  | 
 | ||
|  |    // | ||
|  |    // Big bunch of selection statements now to pick | ||
|  |    // which implementation to use, | ||
|  |    // try to put most likely options first: | ||
|  |    // | ||
|  |    if(z < 0.5) | ||
|  |    { | ||
|  |       // | ||
|  |       // We're going to calculate erf: | ||
|  |       // | ||
|  |       if(z < 1e-10) | ||
|  |       { | ||
|  |          if(z == 0) | ||
|  |          { | ||
|  |             result = T(0); | ||
|  |          } | ||
|  |          else | ||
|  |          { | ||
|  |             static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688); | ||
|  |             result = static_cast<T>(z * 1.125f + z * c); | ||
|  |          } | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     1.561e-17 | ||
|  |          // Expected Error Term:                         1.561e-17 | ||
|  |          // Maximum Relative Change in Control Points:   1.155e-04 | ||
|  |          // Max Error found at double precision =        2.961182e-17 | ||
|  | 
 | ||
|  |          static const T Y = 1.044948577880859375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569), | ||
|  |          }; | ||
|  |          T zz = z * z; | ||
|  |          result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz)); | ||
|  |       } | ||
|  |    } | ||
|  |    else if(invert ? (z < 28) : (z < 5.8f)) | ||
|  |    { | ||
|  |       // | ||
|  |       // We'll be calculating erfc: | ||
|  |       // | ||
|  |       invert = !invert; | ||
|  |       if(z < 1.5f) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     3.702e-17 | ||
|  |          // Expected Error Term:                         3.702e-17 | ||
|  |          // Maximum Relative Change in Control Points:   2.845e-04 | ||
|  |          // Max Error found at double precision =        4.841816e-17 | ||
|  |          static const T Y = 0.405935764312744140625f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5), | ||
|  |          }; | ||
|  |          BOOST_MATH_INSTRUMENT_VARIABLE(Y); | ||
|  |          BOOST_MATH_INSTRUMENT_VARIABLE(P[0]); | ||
|  |          BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]); | ||
|  |          BOOST_MATH_INSTRUMENT_VARIABLE(z); | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 0.5)) / tools::evaluate_polynomial(Q, T(z - 0.5)); | ||
|  |          BOOST_MATH_INSTRUMENT_VARIABLE(result); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |          BOOST_MATH_INSTRUMENT_VARIABLE(result); | ||
|  |       } | ||
|  |       else if(z < 2.5f) | ||
|  |       { | ||
|  |          // Max Error found at double precision =        6.599585e-18 | ||
|  |          // Maximum Deviation Found:                     3.909e-18 | ||
|  |          // Expected Error Term:                         3.909e-18 | ||
|  |          // Maximum Relative Change in Control Points:   9.886e-05 | ||
|  |          static const T Y = 0.50672817230224609375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 1.5)) / tools::evaluate_polynomial(Q, T(z - 1.5)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 4.5f) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     1.512e-17 | ||
|  |          // Expected Error Term:                         1.512e-17 | ||
|  |          // Maximum Relative Change in Control Points:   2.222e-04 | ||
|  |          // Max Error found at double precision =        2.062515e-17 | ||
|  |          static const T Y = 0.5405750274658203125f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 3.5)) / tools::evaluate_polynomial(Q, T(z - 3.5)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Max Error found at double precision =        2.997958e-17 | ||
|  |          // Maximum Deviation Found:                     2.860e-17 | ||
|  |          // Expected Error Term:                         2.859e-17 | ||
|  |          // Maximum Relative Change in Control Points:   1.357e-05 | ||
|  |          static const T Y = 0.5579090118408203125f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // Any value of z larger than 28 will underflow to zero: | ||
|  |       // | ||
|  |       result = 0; | ||
|  |       invert = !invert; | ||
|  |    } | ||
|  | 
 | ||
|  |    if(invert) | ||
|  |    { | ||
|  |       result = 1 - result; | ||
|  |    } | ||
|  | 
 | ||
|  |    return result; | ||
|  | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<53>& t) | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<64>& t) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called"); | ||
|  | 
 | ||
|  |    if(z < 0) | ||
|  |    { | ||
|  |       if(!invert) | ||
|  |          return -erf_imp(T(-z), invert, pol, t); | ||
|  |       else if(z < -0.5) | ||
|  |          return 2 - erf_imp(T(-z), invert, pol, t); | ||
|  |       else | ||
|  |          return 1 + erf_imp(T(-z), false, pol, t); | ||
|  |    } | ||
|  | 
 | ||
|  |    T result; | ||
|  | 
 | ||
|  |    // | ||
|  |    // Big bunch of selection statements now to pick which | ||
|  |    // implementation to use, try to put most likely options | ||
|  |    // first: | ||
|  |    // | ||
|  |    if(z < 0.5) | ||
|  |    { | ||
|  |       // | ||
|  |       // We're going to calculate erf: | ||
|  |       // | ||
|  |       if(z == 0) | ||
|  |       { | ||
|  |          result = 0; | ||
|  |       } | ||
|  |       else if(z < 1e-10) | ||
|  |       { | ||
|  |          static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688); | ||
|  |          result = z * 1.125 + z * c; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   1.623299e-20 | ||
|  |          // Maximum Deviation Found:                     4.326e-22 | ||
|  |          // Expected Error Term:                         -4.326e-22 | ||
|  |          // Maximum Relative Change in Control Points:   1.474e-04 | ||
|  |          static const T Y = 1.044948577880859375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4), | ||
|  |          }; | ||
|  |          result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z))); | ||
|  |       } | ||
|  |    } | ||
|  |    else if(invert ? (z < 110) : (z < 6.4f)) | ||
|  |    { | ||
|  |       // | ||
|  |       // We'll be calculating erfc: | ||
|  |       // | ||
|  |       invert = !invert; | ||
|  |       if(z < 1.5) | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   3.239590e-20 | ||
|  |          // Maximum Deviation Found:                     2.241e-20 | ||
|  |          // Expected Error Term:                         -2.241e-20 | ||
|  |          // Maximum Relative Change in Control Points:   5.110e-03 | ||
|  |          static const T Y = 0.405935764312744140625f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 2.5) | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   3.686211e-21 | ||
|  |          // Maximum Deviation Found:                     1.495e-21 | ||
|  |          // Expected Error Term:                         -1.494e-21 | ||
|  |          // Maximum Relative Change in Control Points:   1.793e-04 | ||
|  |          static const T Y = 0.50672817230224609375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 4.5) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     1.107e-20 | ||
|  |          // Expected Error Term:                         -1.106e-20 | ||
|  |          // Maximum Relative Change in Control Points:   1.709e-04 | ||
|  |          // Max Error found at long double precision =   1.446908e-20 | ||
|  |          static const T Y  = 0.5405750274658203125f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   7.961166e-21 | ||
|  |          // Maximum Deviation Found:                     6.677e-21 | ||
|  |          // Expected Error Term:                         6.676e-21 | ||
|  |          // Maximum Relative Change in Control Points:   2.319e-05 | ||
|  |          static const T Y = 0.55825519561767578125f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // Any value of z larger than 110 will underflow to zero: | ||
|  |       // | ||
|  |       result = 0; | ||
|  |       invert = !invert; | ||
|  |    } | ||
|  | 
 | ||
|  |    if(invert) | ||
|  |    { | ||
|  |       result = 1 - result; | ||
|  |    } | ||
|  | 
 | ||
|  |    return result; | ||
|  | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<64>& t) | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<113>& t) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called"); | ||
|  | 
 | ||
|  |    if(z < 0) | ||
|  |    { | ||
|  |       if(!invert) | ||
|  |          return -erf_imp(T(-z), invert, pol, t); | ||
|  |       else if(z < -0.5) | ||
|  |          return 2 - erf_imp(T(-z), invert, pol, t); | ||
|  |       else | ||
|  |          return 1 + erf_imp(T(-z), false, pol, t); | ||
|  |    } | ||
|  | 
 | ||
|  |    T result; | ||
|  | 
 | ||
|  |    // | ||
|  |    // Big bunch of selection statements now to pick which | ||
|  |    // implementation to use, try to put most likely options | ||
|  |    // first: | ||
|  |    // | ||
|  |    if(z < 0.5) | ||
|  |    { | ||
|  |       // | ||
|  |       // We're going to calculate erf: | ||
|  |       // | ||
|  |       if(z == 0) | ||
|  |       { | ||
|  |          result = 0; | ||
|  |       } | ||
|  |       else if(z < 1e-20) | ||
|  |       { | ||
|  |          static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688); | ||
|  |          result = z * 1.125 + z * c; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   2.342380e-35 | ||
|  |          // Maximum Deviation Found:                     6.124e-36 | ||
|  |          // Expected Error Term:                         -6.124e-36 | ||
|  |          // Maximum Relative Change in Control Points:   3.492e-10 | ||
|  |          static const T Y = 1.0841522216796875f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7), | ||
|  |          }; | ||
|  |          result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z))); | ||
|  |       } | ||
|  |    } | ||
|  |    else if(invert ? (z < 110) : (z < 8.65f)) | ||
|  |    { | ||
|  |       // | ||
|  |       // We'll be calculating erfc: | ||
|  |       // | ||
|  |       invert = !invert; | ||
|  |       if(z < 1) | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   3.246278e-35 | ||
|  |          // Maximum Deviation Found:                     1.388e-35 | ||
|  |          // Expected Error Term:                         1.387e-35 | ||
|  |          // Maximum Relative Change in Control Points:   6.127e-05 | ||
|  |          static const T Y = 0.371877193450927734375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 1.5) | ||
|  |       { | ||
|  |          // Max Error found at long double precision =   2.215785e-35 | ||
|  |          // Maximum Deviation Found:                     1.539e-35 | ||
|  |          // Expected Error Term:                         1.538e-35 | ||
|  |          // Maximum Relative Change in Control Points:   6.104e-05 | ||
|  |          static const T Y = 0.45658016204833984375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 2.25) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     1.418e-35 | ||
|  |          // Expected Error Term:                         1.418e-35 | ||
|  |          // Maximum Relative Change in Control Points:   1.316e-04 | ||
|  |          // Max Error found at long double precision =   1.998462e-35 | ||
|  |          static const T Y = 0.50250148773193359375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if (z < 3) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     3.575e-36 | ||
|  |          // Expected Error Term:                         3.575e-36 | ||
|  |          // Maximum Relative Change in Control Points:   7.103e-05 | ||
|  |          // Max Error found at long double precision =   5.794737e-36 | ||
|  |          static const T Y = 0.52896785736083984375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 3.5) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     8.126e-37 | ||
|  |          // Expected Error Term:                         -8.126e-37 | ||
|  |          // Maximum Relative Change in Control Points:   1.363e-04 | ||
|  |          // Max Error found at long double precision =   1.747062e-36 | ||
|  |          static const T Y = 0.54037380218505859375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 5.5) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     5.804e-36 | ||
|  |          // Expected Error Term:                         -5.803e-36 | ||
|  |          // Maximum Relative Change in Control Points:   2.475e-05 | ||
|  |          // Max Error found at long double precision =   1.349545e-35 | ||
|  |          static const T Y = 0.55000019073486328125f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 7.5) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     1.007e-36 | ||
|  |          // Expected Error Term:                         1.007e-36 | ||
|  |          // Maximum Relative Change in Control Points:   1.027e-03 | ||
|  |          // Max Error found at long double precision =   2.646420e-36 | ||
|  |          static const T Y = 0.5574436187744140625f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else if(z < 11.5) | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     8.380e-36 | ||
|  |          // Expected Error Term:                         8.380e-36 | ||
|  |          // Maximum Relative Change in Control Points:   2.632e-06 | ||
|  |          // Max Error found at long double precision =   9.849522e-36 | ||
|  |          static const T Y = 0.56083202362060546875f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Maximum Deviation Found:                     1.132e-35 | ||
|  |          // Expected Error Term:                         -1.132e-35 | ||
|  |          // Maximum Relative Change in Control Points:   4.674e-04 | ||
|  |          // Max Error found at long double precision =   1.162590e-35 | ||
|  |          static const T Y = 0.5632686614990234375f; | ||
|  |          static const T P[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547), | ||
|  |          }; | ||
|  |          static const T Q[] = {     | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448), | ||
|  |             BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737), | ||
|  |          }; | ||
|  |          result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z)); | ||
|  |          result *= exp(-z * z) / z; | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // Any value of z larger than 110 will underflow to zero: | ||
|  |       // | ||
|  |       result = 0; | ||
|  |       invert = !invert; | ||
|  |    } | ||
|  | 
 | ||
|  |    if(invert) | ||
|  |    { | ||
|  |       result = 1 - result; | ||
|  |    } | ||
|  | 
 | ||
|  |    return result; | ||
|  | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<113>& t) | ||
|  | 
 | ||
|  | template <class T, class Policy, class tag> | ||
|  | struct erf_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          do_init(tag()); | ||
|  |       } | ||
|  |       static void do_init(const mpl::int_<0>&){} | ||
|  |       static void do_init(const mpl::int_<53>&) | ||
|  |       { | ||
|  |          boost::math::erf(static_cast<T>(1e-12), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(0.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(1.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(2.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(4.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(5.25), Policy()); | ||
|  |       } | ||
|  |       static void do_init(const mpl::int_<64>&) | ||
|  |       { | ||
|  |          boost::math::erf(static_cast<T>(1e-12), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(0.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(1.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(2.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(4.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(5.25), Policy()); | ||
|  |       } | ||
|  |       static void do_init(const mpl::int_<113>&) | ||
|  |       { | ||
|  |          boost::math::erf(static_cast<T>(1e-22), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(0.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(1.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(2.125), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(2.75), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(3.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(5.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(7.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(11.25), Policy()); | ||
|  |          boost::math::erf(static_cast<T>(12.5), Policy()); | ||
|  |       } | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy, class tag> | ||
|  | const typename erf_initializer<T, Policy, tag>::init erf_initializer<T, Policy, tag>::initializer; | ||
|  | 
 | ||
|  | } // namespace detail | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */) | ||
|  | { | ||
|  |    typedef typename tools::promote_args<T>::type result_type; | ||
|  |    typedef typename policies::evaluation<result_type, Policy>::type value_type; | ||
|  |    typedef typename policies::precision<result_type, Policy>::type precision_type; | ||
|  |    typedef typename policies::normalise< | ||
|  |       Policy,  | ||
|  |       policies::promote_float<false>,  | ||
|  |       policies::promote_double<false>,  | ||
|  |       policies::discrete_quantile<>, | ||
|  |       policies::assert_undefined<> >::type forwarding_policy; | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name()); | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name()); | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name()); | ||
|  | 
 | ||
|  |    typedef typename mpl::if_< | ||
|  |       mpl::less_equal<precision_type, mpl::int_<0> >, | ||
|  |       mpl::int_<0>, | ||
|  |       typename mpl::if_< | ||
|  |          mpl::less_equal<precision_type, mpl::int_<53> >, | ||
|  |          mpl::int_<53>,  // double | ||
|  |          typename mpl::if_< | ||
|  |             mpl::less_equal<precision_type, mpl::int_<64> >, | ||
|  |             mpl::int_<64>, // 80-bit long double | ||
|  |             typename mpl::if_< | ||
|  |                mpl::less_equal<precision_type, mpl::int_<113> >, | ||
|  |                mpl::int_<113>, // 128-bit long double | ||
|  |                mpl::int_<0> // too many bits, use generic version. | ||
|  |             >::type | ||
|  |          >::type | ||
|  |       >::type | ||
|  |    >::type tag_type; | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name()); | ||
|  | 
 | ||
|  |    detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main | ||
|  | 
 | ||
|  |    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp( | ||
|  |       static_cast<value_type>(z), | ||
|  |       false, | ||
|  |       forwarding_policy(), | ||
|  |       tag_type()), "boost::math::erf<%1%>(%1%, %1%)"); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */) | ||
|  | { | ||
|  |    typedef typename tools::promote_args<T>::type result_type; | ||
|  |    typedef typename policies::evaluation<result_type, Policy>::type value_type; | ||
|  |    typedef typename policies::precision<result_type, Policy>::type precision_type; | ||
|  |    typedef typename policies::normalise< | ||
|  |       Policy,  | ||
|  |       policies::promote_float<false>,  | ||
|  |       policies::promote_double<false>,  | ||
|  |       policies::discrete_quantile<>, | ||
|  |       policies::assert_undefined<> >::type forwarding_policy; | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name()); | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name()); | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name()); | ||
|  | 
 | ||
|  |    typedef typename mpl::if_< | ||
|  |       mpl::less_equal<precision_type, mpl::int_<0> >, | ||
|  |       mpl::int_<0>, | ||
|  |       typename mpl::if_< | ||
|  |          mpl::less_equal<precision_type, mpl::int_<53> >, | ||
|  |          mpl::int_<53>,  // double | ||
|  |          typename mpl::if_< | ||
|  |             mpl::less_equal<precision_type, mpl::int_<64> >, | ||
|  |             mpl::int_<64>, // 80-bit long double | ||
|  |             typename mpl::if_< | ||
|  |                mpl::less_equal<precision_type, mpl::int_<113> >, | ||
|  |                mpl::int_<113>, // 128-bit long double | ||
|  |                mpl::int_<0> // too many bits, use generic version. | ||
|  |             >::type | ||
|  |          >::type | ||
|  |       >::type | ||
|  |    >::type tag_type; | ||
|  | 
 | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name()); | ||
|  | 
 | ||
|  |    detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main | ||
|  | 
 | ||
|  |    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp( | ||
|  |       static_cast<value_type>(z), | ||
|  |       true, | ||
|  |       forwarding_policy(), | ||
|  |       tag_type()), "boost::math::erfc<%1%>(%1%, %1%)"); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline typename tools::promote_args<T>::type erf(T z) | ||
|  | { | ||
|  |    return boost::math::erf(z, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline typename tools::promote_args<T>::type erfc(T z) | ||
|  | { | ||
|  |    return boost::math::erfc(z, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/detail/erf_inv.hpp> | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_SPECIAL_ERF_HPP | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |