159 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			159 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_K0_HPP | ||
|  | #define BOOST_MATH_BESSEL_K0_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4702) // Unreachable code (release mode only warning) | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/assert.hpp> | ||
|  | 
 | ||
|  | // Modified Bessel function of the second kind of order zero | ||
|  | // minimax rational approximations on intervals, see | ||
|  | // Russon and Blair, Chalk River Report AECL-3461, 1969 | ||
|  | 
 | ||
|  | namespace boost { namespace math { namespace detail{ | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_k0(T x, const Policy&); | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | struct bessel_k0_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          do_init(); | ||
|  |       } | ||
|  |       static void do_init() | ||
|  |       { | ||
|  |          bessel_k0(T(1), Policy()); | ||
|  |       } | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T, class Policy> | ||
|  | const typename bessel_k0_initializer<T, Policy>::init bessel_k0_initializer<T, Policy>::initializer; | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_k0(T x, const Policy& pol) | ||
|  | { | ||
|  |     BOOST_MATH_INSTRUMENT_CODE(x); | ||
|  | 
 | ||
|  |     bessel_k0_initializer<T, Policy>::force_instantiate(); | ||
|  | 
 | ||
|  |     static const T P1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4708152720399552679e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9169059852270512312e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6850901201934832188e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1999463724910714109e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3166052564989571850e-01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8599221412826100000e-04)) | ||
|  |     }; | ||
|  |     static const T Q1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1312714303849120380e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4994418972832303646e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T P2[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6128136304458193998e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7333769444840079748e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7984434409411765813e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9501657892958843865e+02)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6414452837299064100e+00)) | ||
|  |     }; | ||
|  |     static const T Q2[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6128136304458193998e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9865713163054025489e+04)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5064972445877992730e+02)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T P3[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1600249425076035558e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3444738764199315021e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8321525870183537725e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1557062783764037541e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5097646353289914539e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7398867902565686251e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0577068948034021957e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1075408980684392399e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.6832589957340267940e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1394980557384778174e+02)) | ||
|  |     }; | ||
|  |     static const T Q3[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.2556599177304839811e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8821890840982713696e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4847228371802360957e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8824616785857027752e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2689839587977598727e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5144644673520157801e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7418829762268075784e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1474655750295278825e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4329628889746408858e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0013443064949242491e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     T value, factor, r, r1, r2; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  | 
 | ||
|  |     static const char* function = "boost::math::bessel_k0<%1%>(%1%,%1%)"; | ||
|  | 
 | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |        return policies::raise_domain_error<T>(function, | ||
|  |             "Got x = %1%, but argument x must be non-negative, complex number result not supported", x, pol); | ||
|  |     } | ||
|  |     if (x == 0) | ||
|  |     { | ||
|  |        return policies::raise_overflow_error<T>(function, 0, pol); | ||
|  |     } | ||
|  |     if (x <= 1)                         // x in (0, 1] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         r1 = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); | ||
|  |         r2 = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); | ||
|  |         factor = log(x); | ||
|  |         value = r1 - factor * r2; | ||
|  |     } | ||
|  |     else                                // x in (1, \infty) | ||
|  |     { | ||
|  |         T y = 1 / x; | ||
|  |         r = evaluate_polynomial(P3, y) / evaluate_polynomial(Q3, y); | ||
|  |         factor = exp(-x) / sqrt(x); | ||
|  |         value = factor * r; | ||
|  |         BOOST_MATH_INSTRUMENT_CODE("y = " << y); | ||
|  |         BOOST_MATH_INSTRUMENT_CODE("r = " << r); | ||
|  |         BOOST_MATH_INSTRUMENT_CODE("factor = " << factor); | ||
|  |         BOOST_MATH_INSTRUMENT_CODE("value = " << value); | ||
|  |     } | ||
|  | 
 | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_K0_HPP | ||
|  | 
 |