142 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			142 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  Copyright (c) 2013 Anton Bikineev
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This is a partial header, do not include on it's own!!!
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Contains asymptotic expansions for derivatives of Bessel J(v,x) and Y(v,x)
							 | 
						||
| 
								 | 
							
								// functions, as x -> INF.
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost{ namespace math{ namespace detail{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline T asymptotic_bessel_derivative_amplitude(T v, T x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // Calculate the amplitude for J'(v,x) and I'(v,x)
							 | 
						||
| 
								 | 
							
								   // for large x: see A&S 9.2.30.
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   T s = 1;
							 | 
						||
| 
								 | 
							
								   const T mu = 4 * v * v;
							 | 
						||
| 
								 | 
							
								   T txq = 2 * x;
							 | 
						||
| 
								 | 
							
								   txq *= txq;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   s -= (mu - 3) / (2 * txq);
							 | 
						||
| 
								 | 
							
								   s -= ((mu - 1) * (mu - 45)) / (txq * txq * 8);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   return sqrt(s * 2 / (boost::math::constants::pi<T>() * x));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline T asymptotic_bessel_derivative_phase_mx(T v, T x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // Calculate the phase of J'(v, x) and Y'(v, x) for large x.
							 | 
						||
| 
								 | 
							
								   // See A&S 9.2.31.
							 | 
						||
| 
								 | 
							
								   // Note that the result returned is the phase less (x - PI(v/2 - 1/4))
							 | 
						||
| 
								 | 
							
								   // which we'll factor in later when we calculate the sines/cosines of the result:
							 | 
						||
| 
								 | 
							
								   const T mu = 4 * v * v;
							 | 
						||
| 
								 | 
							
								   const T mu2 = mu * mu;
							 | 
						||
| 
								 | 
							
								   const T mu3 = mu2 * mu;
							 | 
						||
| 
								 | 
							
								   T denom = 4 * x;
							 | 
						||
| 
								 | 
							
								   T denom_mult = denom * denom;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   T s = 0;
							 | 
						||
| 
								 | 
							
								   s += (mu + 3) / (2 * denom);
							 | 
						||
| 
								 | 
							
								   denom *= denom_mult;
							 | 
						||
| 
								 | 
							
								   s += (mu2 + (46 * mu) - 63) / (6 * denom);
							 | 
						||
| 
								 | 
							
								   denom *= denom_mult;
							 | 
						||
| 
								 | 
							
								   s += (mu3 + (185 * mu2) - (2053 * mu) + 1899) / (5 * denom);
							 | 
						||
| 
								 | 
							
								   return s;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline T asymptotic_bessel_y_derivative_large_x_2(T v, T x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // See A&S 9.2.20.
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   // Get the phase and amplitude:
							 | 
						||
| 
								 | 
							
								   const T ampl = asymptotic_bessel_derivative_amplitude(v, x);
							 | 
						||
| 
								 | 
							
								   const T phase = asymptotic_bessel_derivative_phase_mx(v, x);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(phase);
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Calculate the sine of the phase, using
							 | 
						||
| 
								 | 
							
								   // sine/cosine addition rules to factor in
							 | 
						||
| 
								 | 
							
								   // the x - PI(v/2 - 1/4) term not added to the
							 | 
						||
| 
								 | 
							
								   // phase when we calculated it.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   const T cx = cos(x);
							 | 
						||
| 
								 | 
							
								   const T sx = sin(x);
							 | 
						||
| 
								 | 
							
								   const T vd2shifted = (v / 2) - 0.25f;
							 | 
						||
| 
								 | 
							
								   const T ci = cos_pi(vd2shifted);
							 | 
						||
| 
								 | 
							
								   const T si = sin_pi(vd2shifted);
							 | 
						||
| 
								 | 
							
								   const T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(sin(phase));
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(cos(x));
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(cos(phase));
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(sin(x));
							 | 
						||
| 
								 | 
							
								   return sin_phase * ampl;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline T asymptotic_bessel_j_derivative_large_x_2(T v, T x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // See A&S 9.2.20.
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   // Get the phase and amplitude:
							 | 
						||
| 
								 | 
							
								   const T ampl = asymptotic_bessel_derivative_amplitude(v, x);
							 | 
						||
| 
								 | 
							
								   const T phase = asymptotic_bessel_derivative_phase_mx(v, x);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(phase);
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Calculate the sine of the phase, using
							 | 
						||
| 
								 | 
							
								   // sine/cosine addition rules to factor in
							 | 
						||
| 
								 | 
							
								   // the x - PI(v/2 - 1/4) term not added to the
							 | 
						||
| 
								 | 
							
								   // phase when we calculated it.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(cos(phase));
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(cos(x));
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(sin(phase));
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_CODE(sin(x));
							 | 
						||
| 
								 | 
							
								   const T cx = cos(x);
							 | 
						||
| 
								 | 
							
								   const T sx = sin(x);
							 | 
						||
| 
								 | 
							
								   const T vd2shifted = (v / 2) - 0.25f;
							 | 
						||
| 
								 | 
							
								   const T ci = cos_pi(vd2shifted);
							 | 
						||
| 
								 | 
							
								   const T si = sin_pi(vd2shifted);
							 | 
						||
| 
								 | 
							
								   const T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
							 | 
						||
| 
								 | 
							
								   return sin_phase * ampl;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								inline bool asymptotic_bessel_derivative_large_x_limit(const T& v, const T& x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // This function is the copy of math::asymptotic_bessel_large_x_limit
							 | 
						||
| 
								 | 
							
								   // It means that we use the same rules for determining how x is large
							 | 
						||
| 
								 | 
							
								   // compared to v.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Determines if x is large enough compared to v to take the asymptotic
							 | 
						||
| 
								 | 
							
								   // forms above.  From A&S 9.2.28 we require:
							 | 
						||
| 
								 | 
							
								   //    v < x * eps^1/8
							 | 
						||
| 
								 | 
							
								   // and from A&S 9.2.29 we require:
							 | 
						||
| 
								 | 
							
								   //    v^12/10 < 1.5 * x * eps^1/10
							 | 
						||
| 
								 | 
							
								   // using the former seems to work OK in practice with broadly similar
							 | 
						||
| 
								 | 
							
								   // error rates either side of the divide for v < 10000.
							 | 
						||
| 
								 | 
							
								   // At double precision eps^1/8 ~= 0.01.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   return (std::max)(T(fabs(v)), T(1)) < x * sqrt(boost::math::tools::forth_root_epsilon<T>());
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}}} // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
							 |