810 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			810 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright John Maddock 2008. | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | // | ||
|  | // Wrapper that works with mpfr_class defined in gmpfrxx.h | ||
|  | // See http://math.berkeley.edu/~wilken/code/gmpfrxx/ | ||
|  | // Also requires the gmp and mpfr libraries. | ||
|  | // | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_E_FLOAT_BINDINGS_HPP | ||
|  | #define BOOST_MATH_E_FLOAT_BINDINGS_HPP | ||
|  | 
 | ||
|  | #include <boost/config.hpp> | ||
|  | 
 | ||
|  | 
 | ||
|  | #include <e_float/e_float.h> | ||
|  | #include <functions/functions.h> | ||
|  | 
 | ||
|  | #include <boost/math/tools/precision.hpp> | ||
|  | #include <boost/math/tools/real_cast.hpp> | ||
|  | #include <boost/math/policies/policy.hpp> | ||
|  | #include <boost/math/distributions/fwd.hpp> | ||
|  | #include <boost/math/special_functions/math_fwd.hpp> | ||
|  | #include <boost/math/special_functions/fpclassify.hpp> | ||
|  | #include <boost/math/bindings/detail/big_digamma.hpp> | ||
|  | #include <boost/math/bindings/detail/big_lanczos.hpp> | ||
|  | #include <boost/lexical_cast.hpp> | ||
|  | 
 | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ namespace ef{ | ||
|  | 
 | ||
|  | class e_float | ||
|  | { | ||
|  | public: | ||
|  |    // Constructors: | ||
|  |    e_float() {} | ||
|  |    e_float(const ::e_float& c) : m_value(c){} | ||
|  |    e_float(char c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  | #ifndef BOOST_NO_INTRINSIC_WCHAR_T | ||
|  |    e_float(wchar_t c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  | #endif | ||
|  |    e_float(unsigned char c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(signed char c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(unsigned short c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(short c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(unsigned int c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(int c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(unsigned long c) | ||
|  |    { | ||
|  |       m_value = ::e_float((UINT64)c); | ||
|  |    } | ||
|  |    e_float(long c) | ||
|  |    { | ||
|  |       m_value = ::e_float((INT64)c); | ||
|  |    } | ||
|  | #ifdef BOOST_HAS_LONG_LONG | ||
|  |    e_float(boost::ulong_long_type c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  |    e_float(boost::long_long_type c) | ||
|  |    { | ||
|  |       m_value = ::e_float(c); | ||
|  |    } | ||
|  | #endif | ||
|  |    e_float(float c) | ||
|  |    { | ||
|  |       assign_large_real(c); | ||
|  |    } | ||
|  |    e_float(double c) | ||
|  |    { | ||
|  |       assign_large_real(c); | ||
|  |    } | ||
|  |    e_float(long double c) | ||
|  |    { | ||
|  |       assign_large_real(c); | ||
|  |    } | ||
|  | 
 | ||
|  |    // Assignment: | ||
|  |    e_float& operator=(char c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(unsigned char c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(signed char c) { m_value = ::e_float(c); return *this; } | ||
|  | #ifndef BOOST_NO_INTRINSIC_WCHAR_T | ||
|  |    e_float& operator=(wchar_t c) { m_value = ::e_float(c); return *this; } | ||
|  | #endif | ||
|  |    e_float& operator=(short c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(unsigned short c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(int c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(unsigned int c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(long c) { m_value = ::e_float((INT64)c); return *this; } | ||
|  |    e_float& operator=(unsigned long c) { m_value = ::e_float((UINT64)c); return *this; } | ||
|  | #ifdef BOOST_HAS_LONG_LONG | ||
|  |    e_float& operator=(boost::long_long_type c) { m_value = ::e_float(c); return *this; } | ||
|  |    e_float& operator=(boost::ulong_long_type c) { m_value = ::e_float(c); return *this; } | ||
|  | #endif | ||
|  |    e_float& operator=(float c) { assign_large_real(c); return *this; } | ||
|  |    e_float& operator=(double c) { assign_large_real(c); return *this; } | ||
|  |    e_float& operator=(long double c) { assign_large_real(c); return *this; } | ||
|  | 
 | ||
|  |    // Access: | ||
|  |    ::e_float& value(){ return m_value; } | ||
|  |    ::e_float const& value()const{ return m_value; } | ||
|  | 
 | ||
|  |    // Member arithmetic: | ||
|  |    e_float& operator+=(const e_float& other) | ||
|  |    { m_value += other.value(); return *this; } | ||
|  |    e_float& operator-=(const e_float& other) | ||
|  |    { m_value -= other.value(); return *this; } | ||
|  |    e_float& operator*=(const e_float& other) | ||
|  |    { m_value *= other.value(); return *this; } | ||
|  |    e_float& operator/=(const e_float& other) | ||
|  |    { m_value /= other.value(); return *this; } | ||
|  |    e_float operator-()const | ||
|  |    { return -m_value; } | ||
|  |    e_float const& operator+()const | ||
|  |    { return *this; } | ||
|  | 
 | ||
|  | private: | ||
|  |    ::e_float m_value; | ||
|  | 
 | ||
|  |    template <class V> | ||
|  |    void assign_large_real(const V& a) | ||
|  |    { | ||
|  |       using std::frexp; | ||
|  |       using std::ldexp; | ||
|  |       using std::floor; | ||
|  |       if (a == 0) { | ||
|  |          m_value = ::ef::zero(); | ||
|  |          return; | ||
|  |       } | ||
|  | 
 | ||
|  |       if (a == 1) { | ||
|  |          m_value = ::ef::one(); | ||
|  |          return; | ||
|  |       } | ||
|  | 
 | ||
|  |       if ((boost::math::isinf)(a)) | ||
|  |       { | ||
|  |          m_value = a > 0 ? m_value.my_value_inf() : -m_value.my_value_inf(); | ||
|  |          return; | ||
|  |       } | ||
|  |       if((boost::math::isnan)(a)) | ||
|  |       { | ||
|  |          m_value = m_value.my_value_nan(); | ||
|  |          return; | ||
|  |       } | ||
|  | 
 | ||
|  |       int e; | ||
|  |       long double f, term; | ||
|  |       ::e_float t; | ||
|  |       m_value = ::ef::zero(); | ||
|  | 
 | ||
|  |       f = frexp(a, &e); | ||
|  | 
 | ||
|  |       ::e_float shift = ::ef::pow2(30); | ||
|  | 
 | ||
|  |       while(f) | ||
|  |       { | ||
|  |          // extract 30 bits from f: | ||
|  |          f = ldexp(f, 30); | ||
|  |          term = floor(f); | ||
|  |          e -= 30; | ||
|  |          m_value *= shift; | ||
|  |          m_value += ::e_float(static_cast<INT64>(term)); | ||
|  |          f -= term; | ||
|  |       } | ||
|  |       m_value *= ::ef::pow2(e); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | // Non-member arithmetic: | ||
|  | inline e_float operator+(const e_float& a, const e_float& b) | ||
|  | { | ||
|  |    e_float result(a); | ||
|  |    result += b; | ||
|  |    return result; | ||
|  | } | ||
|  | inline e_float operator-(const e_float& a, const e_float& b) | ||
|  | { | ||
|  |    e_float result(a); | ||
|  |    result -= b; | ||
|  |    return result; | ||
|  | } | ||
|  | inline e_float operator*(const e_float& a, const e_float& b) | ||
|  | { | ||
|  |    e_float result(a); | ||
|  |    result *= b; | ||
|  |    return result; | ||
|  | } | ||
|  | inline e_float operator/(const e_float& a, const e_float& b) | ||
|  | { | ||
|  |    e_float result(a); | ||
|  |    result /= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | // Comparison: | ||
|  | inline bool operator == (const e_float& a, const e_float& b) | ||
|  | { return a.value() == b.value() ? true : false; } | ||
|  | inline bool operator != (const e_float& a, const e_float& b) | ||
|  | { return a.value() != b.value() ? true : false;} | ||
|  | inline bool operator < (const e_float& a, const e_float& b) | ||
|  | { return a.value() < b.value() ? true : false; } | ||
|  | inline bool operator <= (const e_float& a, const e_float& b) | ||
|  | { return a.value() <= b.value() ? true : false; } | ||
|  | inline bool operator > (const e_float& a, const e_float& b) | ||
|  | { return a.value() > b.value() ? true : false; } | ||
|  | inline bool operator >= (const e_float& a, const e_float& b) | ||
|  | { return a.value() >= b.value() ? true : false; } | ||
|  | 
 | ||
|  | std::istream& operator >> (std::istream& is, e_float& f) | ||
|  | { | ||
|  |    return is >> f.value(); | ||
|  | } | ||
|  | 
 | ||
|  | std::ostream& operator << (std::ostream& os, const e_float& f) | ||
|  | { | ||
|  |    return os << f.value(); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float fabs(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::fabs(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float abs(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::fabs(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float floor(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::floor(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float ceil(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::ceil(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float pow(const e_float& v, const e_float& w) | ||
|  | { | ||
|  |    return ::ef::pow(v.value(), w.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float pow(const e_float& v, int i) | ||
|  | { | ||
|  |    return ::ef::pow(v.value(), ::e_float(i)); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float exp(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::exp(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float log(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::log(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float sqrt(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::sqrt(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float sin(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::sin(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float cos(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::cos(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float tan(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::tan(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float acos(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::acos(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float asin(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::asin(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float atan(const e_float& v) | ||
|  | { | ||
|  |    return ::ef::atan(v.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float atan2(const e_float& v, const e_float& u) | ||
|  | { | ||
|  |    return ::ef::atan2(v.value(), u.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float ldexp(const e_float& v, int e) | ||
|  | { | ||
|  |    return v.value() * ::ef::pow2(e); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float frexp(const e_float& v, int* expon) | ||
|  | { | ||
|  |    double d; | ||
|  |    INT64 i; | ||
|  |    v.value().extract_parts(d, i); | ||
|  |    *expon = static_cast<int>(i); | ||
|  |    return v.value() * ::ef::pow2(-i); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float sinh (const e_float& x) | ||
|  | { | ||
|  |    return ::ef::sinh(x.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float cosh (const e_float& x) | ||
|  | { | ||
|  |    return ::ef::cosh(x.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float tanh (const e_float& x) | ||
|  | { | ||
|  |    return ::ef::tanh(x.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float asinh (const e_float& x) | ||
|  | { | ||
|  |    return ::ef::asinh(x.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float acosh (const e_float& x) | ||
|  | { | ||
|  |    return ::ef::acosh(x.value()); | ||
|  | } | ||
|  | 
 | ||
|  | inline e_float atanh (const e_float& x) | ||
|  | { | ||
|  |    return ::ef::atanh(x.value()); | ||
|  | } | ||
|  | 
 | ||
|  | e_float fmod(const e_float& v1, const e_float& v2) | ||
|  | { | ||
|  |    e_float n; | ||
|  |    if(v1 < 0) | ||
|  |       n = ceil(v1 / v2); | ||
|  |    else | ||
|  |       n = floor(v1 / v2); | ||
|  |    return v1 - n * v2; | ||
|  | } | ||
|  | 
 | ||
|  | } namespace detail{ | ||
|  | 
 | ||
|  | template <> | ||
|  | inline int fpclassify_imp< boost::math::ef::e_float> BOOST_NO_MACRO_EXPAND(boost::math::ef::e_float x, const generic_tag<true>&) | ||
|  | { | ||
|  |    if(x.value().isnan()) | ||
|  |       return FP_NAN; | ||
|  |    if(x.value().isinf()) | ||
|  |       return FP_INFINITE; | ||
|  |    if(x == 0) | ||
|  |       return FP_ZERO; | ||
|  |    return FP_NORMAL; | ||
|  | } | ||
|  | 
 | ||
|  | } namespace ef{ | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline int itrunc(const e_float& v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    e_float r = boost::math::trunc(v, pol); | ||
|  |    if(fabs(r) > (std::numeric_limits<int>::max)()) | ||
|  |       return static_cast<int>(policies::raise_rounding_error("boost::math::itrunc<%1%>(%1%)", 0, 0, v, pol)); | ||
|  |    return static_cast<int>(r.value().extract_int64()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline long ltrunc(const e_float& v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    e_float r = boost::math::trunc(v, pol); | ||
|  |    if(fabs(r) > (std::numeric_limits<long>::max)()) | ||
|  |       return static_cast<long>(policies::raise_rounding_error("boost::math::ltrunc<%1%>(%1%)", 0, 0L, v, pol)); | ||
|  |    return static_cast<long>(r.value().extract_int64()); | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef BOOST_HAS_LONG_LONG | ||
|  | template <class Policy> | ||
|  | inline boost::long_long_type lltrunc(const e_float& v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    e_float r = boost::math::trunc(v, pol); | ||
|  |    if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)()) | ||
|  |       return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::lltrunc<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64()); | ||
|  |    return static_cast<boost::long_long_type>(r.value().extract_int64()); | ||
|  | } | ||
|  | #endif | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline int iround(const e_float& v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    e_float r = boost::math::round(v, pol); | ||
|  |    if(fabs(r) > (std::numeric_limits<int>::max)()) | ||
|  |       return static_cast<int>(policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", 0, v, 0, pol).value().extract_int64()); | ||
|  |    return static_cast<int>(r.value().extract_int64()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline long lround(const e_float& v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    e_float r = boost::math::round(v, pol); | ||
|  |    if(fabs(r) > (std::numeric_limits<long>::max)()) | ||
|  |       return static_cast<long int>(policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", 0, v, 0L, pol).value().extract_int64()); | ||
|  |    return static_cast<long int>(r.value().extract_int64()); | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef BOOST_HAS_LONG_LONG | ||
|  | template <class Policy> | ||
|  | inline boost::long_long_type llround(const e_float& v, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    e_float r = boost::math::round(v, pol); | ||
|  |    if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)()) | ||
|  |       return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64()); | ||
|  |    return static_cast<boost::long_long_type>(r.value().extract_int64()); | ||
|  | } | ||
|  | #endif | ||
|  | 
 | ||
|  | }}} | ||
|  | 
 | ||
|  | namespace std{ | ||
|  | 
 | ||
|  |    template<> | ||
|  |    class numeric_limits< ::boost::math::ef::e_float> : public numeric_limits< ::e_float> | ||
|  |    { | ||
|  |    public: | ||
|  |       static const ::boost::math::ef::e_float (min) (void) | ||
|  |       { | ||
|  |          return (numeric_limits< ::e_float>::min)(); | ||
|  |       } | ||
|  |       static const ::boost::math::ef::e_float (max) (void) | ||
|  |       { | ||
|  |          return (numeric_limits< ::e_float>::max)(); | ||
|  |       } | ||
|  |       static const ::boost::math::ef::e_float epsilon (void) | ||
|  |       { | ||
|  |          return (numeric_limits< ::e_float>::epsilon)(); | ||
|  |       } | ||
|  |       static const ::boost::math::ef::e_float round_error(void) | ||
|  |       { | ||
|  |          return (numeric_limits< ::e_float>::round_error)(); | ||
|  |       } | ||
|  |       static const ::boost::math::ef::e_float infinity (void) | ||
|  |       { | ||
|  |          return (numeric_limits< ::e_float>::infinity)(); | ||
|  |       } | ||
|  |       static const ::boost::math::ef::e_float quiet_NaN (void) | ||
|  |       { | ||
|  |          return (numeric_limits< ::e_float>::quiet_NaN)(); | ||
|  |       } | ||
|  |       // | ||
|  |       // e_float's supplied digits member is wrong  | ||
|  |       // - it should be same the same as digits 10 | ||
|  |       // - given that radix is 10. | ||
|  |       // | ||
|  |       static const int digits = digits10; | ||
|  |    }; | ||
|  | 
 | ||
|  | } // namespace std | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ | ||
|  | 
 | ||
|  | namespace policies{ | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | struct precision< ::boost::math::ef::e_float, Policy> | ||
|  | { | ||
|  |    typedef typename Policy::precision_type precision_type; | ||
|  |    typedef digits2<((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L> digits_2; | ||
|  |    typedef typename mpl::if_c< | ||
|  |       ((digits_2::value <= precision_type::value)  | ||
|  |       || (Policy::precision_type::value <= 0)), | ||
|  |       // Default case, full precision for RealType: | ||
|  |       digits_2, | ||
|  |       // User customised precision: | ||
|  |       precision_type | ||
|  |    >::type type; | ||
|  | }; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | namespace tools{ | ||
|  | 
 | ||
|  | template <> | ||
|  | inline int digits< ::boost::math::ef::e_float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( ::boost::math::ef::e_float)) | ||
|  | { | ||
|  |    return ((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline  ::boost::math::ef::e_float root_epsilon< ::boost::math::ef::e_float>() | ||
|  | { | ||
|  |    return detail::root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>()); | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline  ::boost::math::ef::e_float forth_root_epsilon< ::boost::math::ef::e_float>() | ||
|  | { | ||
|  |    return detail::forth_root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>()); | ||
|  | } | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | namespace lanczos{ | ||
|  | 
 | ||
|  | template<class Policy> | ||
|  | struct lanczos<boost::math::ef::e_float, Policy> | ||
|  | { | ||
|  |    typedef typename mpl::if_c< | ||
|  |       std::numeric_limits< ::e_float>::digits10 < 22, | ||
|  |       lanczos13UDT, | ||
|  |       typename mpl::if_c< | ||
|  |          std::numeric_limits< ::e_float>::digits10 < 36, | ||
|  |          lanczos22UDT, | ||
|  |          typename mpl::if_c< | ||
|  |             std::numeric_limits< ::e_float>::digits10 < 50, | ||
|  |             lanczos31UDT, | ||
|  |             typename mpl::if_c< | ||
|  |                std::numeric_limits< ::e_float>::digits10 < 110, | ||
|  |                lanczos61UDT, | ||
|  |                undefined_lanczos | ||
|  |             >::type | ||
|  |          >::type | ||
|  |       >::type | ||
|  |    >::type type; | ||
|  | }; | ||
|  | 
 | ||
|  | } // namespace lanczos | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline boost::math::ef::e_float skewness(const extreme_value_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | ||
|  | { | ||
|  |    // | ||
|  |    // This is 12 * sqrt(6) * zeta(3) / pi^3: | ||
|  |    // See http://mathworld.wolfram.com/ExtremeValueDistribution.html | ||
|  |    // | ||
|  |    return boost::lexical_cast<boost::math::ef::e_float>("1.1395470994046486574927930193898461120875997958366"); | ||
|  | } | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline boost::math::ef::e_float skewness(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | ||
|  | { | ||
|  |   // using namespace boost::math::constants; | ||
|  |   return boost::lexical_cast<boost::math::ef::e_float>("0.63111065781893713819189935154422777984404221106391"); | ||
|  |   // Computed using NTL at 150 bit, about 50 decimal digits. | ||
|  |   // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>(); | ||
|  | } | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline boost::math::ef::e_float kurtosis(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | ||
|  | { | ||
|  |   // using namespace boost::math::constants; | ||
|  |   return boost::lexical_cast<boost::math::ef::e_float>("3.2450893006876380628486604106197544154170667057995"); | ||
|  |   // Computed using NTL at 150 bit, about 50 decimal digits. | ||
|  |   // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) / | ||
|  |   // (four_minus_pi<RealType>() * four_minus_pi<RealType>()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | inline boost::math::ef::e_float kurtosis_excess(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | ||
|  | { | ||
|  |   //using namespace boost::math::constants; | ||
|  |   // Computed using NTL at 150 bit, about 50 decimal digits. | ||
|  |   return boost::lexical_cast<boost::math::ef::e_float>("0.2450893006876380628486604106197544154170667057995"); | ||
|  |   // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) / | ||
|  |   //   (four_minus_pi<RealType>() * four_minus_pi<RealType>()); | ||
|  | } // kurtosis | ||
|  | 
 | ||
|  | namespace detail{ | ||
|  | 
 | ||
|  | // | ||
|  | // Version of Digamma accurate to ~100 decimal digits. | ||
|  | // | ||
|  | template <class Policy> | ||
|  | boost::math::ef::e_float digamma_imp(boost::math::ef::e_float x, const mpl::int_<0>* , const Policy& pol) | ||
|  | { | ||
|  |    // | ||
|  |    // This handles reflection of negative arguments, and all our | ||
|  |    // eboost::math::ef::e_floator handling, then forwards to the T-specific approximation. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  | 
 | ||
|  |    boost::math::ef::e_float result = 0; | ||
|  |    // | ||
|  |    // Check for negative arguments and use reflection: | ||
|  |    // | ||
|  |    if(x < 0) | ||
|  |    { | ||
|  |       // Reflect: | ||
|  |       x = 1 - x; | ||
|  |       // Argument reduction for tan: | ||
|  |       boost::math::ef::e_float remainder = x - floor(x); | ||
|  |       // Shift to negative if > 0.5: | ||
|  |       if(remainder > 0.5) | ||
|  |       { | ||
|  |          remainder -= 1; | ||
|  |       } | ||
|  |       // | ||
|  |       // check for evaluation at a negative pole: | ||
|  |       // | ||
|  |       if(remainder == 0) | ||
|  |       { | ||
|  |          return policies::raise_pole_error<boost::math::ef::e_float>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); | ||
|  |       } | ||
|  |       result = constants::pi<boost::math::ef::e_float>() / tan(constants::pi<boost::math::ef::e_float>() * remainder); | ||
|  |    } | ||
|  |    result += big_digamma(x); | ||
|  |    return result; | ||
|  | } | ||
|  | boost::math::ef::e_float bessel_i0(boost::math::ef::e_float x) | ||
|  | { | ||
|  |     static const boost::math::ef::e_float P1[] = { | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375249e+15"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-5.5050369673018427753e+14"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-3.2940087627407749166e+13"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-8.4925101247114157499e+11"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-1.1912746104985237192e+10"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-1.0313066708737980747e+08"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-5.9545626019847898221e+05"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.4125195876041896775e+03"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-7.0935347449210549190e+00"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-1.5453977791786851041e-02"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.5172644670688975051e-05"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-3.0517226450451067446e-08"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.6843448573468483278e-11"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-1.5982226675653184646e-14"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-5.2487866627945699800e-18"), | ||
|  |     }; | ||
|  |     static const boost::math::ef::e_float Q1[] = { | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375245e+15"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("7.8858692566751002988e+12"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-1.2207067397808979846e+10"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("1.0377081058062166144e+07"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-4.8527560179962773045e+03"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("1.0"), | ||
|  |     }; | ||
|  |     static const boost::math::ef::e_float P2[] = { | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.2210262233306573296e-04"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("1.3067392038106924055e-02"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-4.4700805721174453923e-01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("5.5674518371240761397e+00"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-2.3517945679239481621e+01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("3.1611322818701131207e+01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-9.6090021968656180000e+00"), | ||
|  |     }; | ||
|  |     static const boost::math::ef::e_float Q2[] = { | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-5.5194330231005480228e-04"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("3.2547697594819615062e-02"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-1.1151759188741312645e+00"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("1.3982595353892851542e+01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-6.0228002066743340583e+01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("8.5539563258012929600e+01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("-3.1446690275135491500e+01"), | ||
|  |         boost::lexical_cast<boost::math::ef::e_float>("1.0"), | ||
|  |     }; | ||
|  |     boost::math::ef::e_float value, factor, r; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  | 
 | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |         x = -x;                         // even function | ||
|  |     } | ||
|  |     if (x == 0) | ||
|  |     { | ||
|  |         return static_cast<boost::math::ef::e_float>(1); | ||
|  |     } | ||
|  |     if (x <= 15)                        // x in (0, 15] | ||
|  |     { | ||
|  |         boost::math::ef::e_float y = x * x; | ||
|  |         value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); | ||
|  |     } | ||
|  |     else                                // x in (15, \infty) | ||
|  |     { | ||
|  |         boost::math::ef::e_float y = 1 / x - boost::math::ef::e_float(1) / 15; | ||
|  |         r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); | ||
|  |         factor = exp(x) / sqrt(x); | ||
|  |         value = factor * r; | ||
|  |     } | ||
|  | 
 | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::ef::e_float bessel_i1(boost::math::ef::e_float x) | ||
|  | { | ||
|  |     static const boost::math::ef::e_float P1[] = { | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.4577180278143463643e+15"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.7732037840791591320e+14"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-6.9876779648010090070e+12"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.3357437682275493024e+11"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.4828267606612366099e+09"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.0588550724769347106e+07"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-5.1894091982308017540e+04"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.8225946631657315931e+02"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-4.7207090827310162436e-01"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-9.1746443287817501309e-04"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.3466829827635152875e-06"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.4831904935994647675e-09"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.1928788903603238754e-12"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-6.5245515583151902910e-16"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.9705291802535139930e-19"), | ||
|  |     }; | ||
|  |     static const boost::math::ef::e_float Q1[] = { | ||
|  |         lexical_cast<boost::math::ef::e_float>("-2.9154360556286927285e+15"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("9.7887501377547640438e+12"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.4386907088588283434e+10"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("1.1594225856856884006e+07"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-5.1326864679904189920e+03"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("1.0"), | ||
|  |     }; | ||
|  |     static const boost::math::ef::e_float P2[] = { | ||
|  |         lexical_cast<boost::math::ef::e_float>("1.4582087408985668208e-05"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-8.9359825138577646443e-04"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("2.9204895411257790122e-02"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-3.4198728018058047439e-01"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("1.3960118277609544334e+00"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-1.9746376087200685843e+00"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("8.5591872901933459000e-01"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-6.0437159056137599999e-02"), | ||
|  |     }; | ||
|  |     static const boost::math::ef::e_float Q2[] = { | ||
|  |         lexical_cast<boost::math::ef::e_float>("3.7510433111922824643e-05"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-2.2835624489492512649e-03"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("7.4212010813186530069e-02"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-8.5017476463217924408e-01"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("3.2593714889036996297e+00"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("-3.8806586721556593450e+00"), | ||
|  |         lexical_cast<boost::math::ef::e_float>("1.0"), | ||
|  |     }; | ||
|  |     boost::math::ef::e_float value, factor, r, w; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  | 
 | ||
|  |     w = abs(x); | ||
|  |     if (x == 0) | ||
|  |     { | ||
|  |         return static_cast<boost::math::ef::e_float>(0); | ||
|  |     } | ||
|  |     if (w <= 15)                        // w in (0, 15] | ||
|  |     { | ||
|  |         boost::math::ef::e_float y = x * x; | ||
|  |         r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); | ||
|  |         factor = w; | ||
|  |         value = factor * r; | ||
|  |     } | ||
|  |     else                                // w in (15, \infty) | ||
|  |     { | ||
|  |         boost::math::ef::e_float y = 1 / w - boost::math::ef::e_float(1) / 15; | ||
|  |         r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); | ||
|  |         factor = exp(w) / sqrt(w); | ||
|  |         value = factor * r; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |         value *= -value;                 // odd function | ||
|  |     } | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace detail | ||
|  | 
 | ||
|  | }} | ||
|  | #endif // BOOST_MATH_E_FLOAT_BINDINGS_HPP | ||
|  | 
 |