200 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			200 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_J1_HPP | ||
|  | #define BOOST_MATH_BESSEL_J1_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/math/tools/rational.hpp> | ||
|  | #include <boost/math/tools/big_constant.hpp> | ||
|  | #include <boost/assert.hpp> | ||
|  | 
 | ||
|  | // Bessel function of the first kind of order one | ||
|  | // x <= 8, minimax rational approximations on root-bracketing intervals | ||
|  | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 | ||
|  | 
 | ||
|  | namespace boost { namespace math{  namespace detail{ | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | T bessel_j1(T x); | ||
|  | 
 | ||
|  | template <class T> | ||
|  | struct bessel_j1_initializer | ||
|  | { | ||
|  |    struct init | ||
|  |    { | ||
|  |       init() | ||
|  |       { | ||
|  |          do_init(); | ||
|  |       } | ||
|  |       static void do_init() | ||
|  |       { | ||
|  |          bessel_j1(T(1)); | ||
|  |       } | ||
|  |       void force_instantiate()const{} | ||
|  |    }; | ||
|  |    static const init initializer; | ||
|  |    static void force_instantiate() | ||
|  |    { | ||
|  |       initializer.force_instantiate(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template <class T> | ||
|  | const typename bessel_j1_initializer<T>::init bessel_j1_initializer<T>::initializer; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | T bessel_j1(T x) | ||
|  | { | ||
|  |     bessel_j1_initializer<T>::force_instantiate(); | ||
|  | 
 | ||
|  |     static const T P1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4258509801366645672e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6781041261492395835e+09)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1548696764841276794e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.8062904098958257677e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4615792982775076130e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0650724020080236441e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0767857011487300348e-02)) | ||
|  |     }; | ||
|  |     static const T Q1[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1868604460820175290e+12)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.2091902282580133541e+10)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0228375140097033958e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9117614494174794095e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0742272239517380498e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) | ||
|  |     }; | ||
|  |     static const T P2[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7527881995806511112e+16)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.6608531731299018674e+15)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6658018905416665164e+13)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5580665670910619166e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8113931269860667829e+09)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.0793266148011179143e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.5023342220781607561e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6179191852758252278e+00)) | ||
|  |     }; | ||
|  |     static const T Q2[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7253905888447681194e+18)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7128800897135812012e+16)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.4899346165481429307e+13)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7622777286244082666e+11)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4872502899596389593e+08)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1267125065029138050e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3886978985861357615e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T PC[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) | ||
|  |     }; | ||
|  |     static const T QC[] = { | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)), | ||
|  |         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T PS[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) | ||
|  |     }; | ||
|  |     static const T QS[] = { | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)), | ||
|  |          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) | ||
|  |     }; | ||
|  |     static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8317059702075123156e+00)), | ||
|  |                    x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0155866698156187535e+00)), | ||
|  |                    x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.810e+02)), | ||
|  |                    x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2527979248768438556e-04)), | ||
|  |                    x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7960e+03)), | ||
|  |                    x22 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8330184381246462950e-05)); | ||
|  | 
 | ||
|  |     T value, factor, r, rc, rs, w; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  |     using namespace boost::math::tools; | ||
|  |     using namespace boost::math::constants; | ||
|  | 
 | ||
|  |     w = abs(x); | ||
|  |     if (x == 0) | ||
|  |     { | ||
|  |         return static_cast<T>(0); | ||
|  |     } | ||
|  |     if (w <= 4)                       // w in (0, 4] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         BOOST_ASSERT(sizeof(P1) == sizeof(Q1)); | ||
|  |         r = evaluate_rational(P1, Q1, y); | ||
|  |         factor = w * (w + x1) * ((w - x11/256) - x12); | ||
|  |         value = factor * r; | ||
|  |     } | ||
|  |     else if (w <= 8)                  // w in (4, 8] | ||
|  |     { | ||
|  |         T y = x * x; | ||
|  |         BOOST_ASSERT(sizeof(P2) == sizeof(Q2)); | ||
|  |         r = evaluate_rational(P2, Q2, y); | ||
|  |         factor = w * (w + x2) * ((w - x21/256) - x22); | ||
|  |         value = factor * r; | ||
|  |     } | ||
|  |     else                                // w in (8, \infty) | ||
|  |     { | ||
|  |         T y = 8 / w; | ||
|  |         T y2 = y * y; | ||
|  |         BOOST_ASSERT(sizeof(PC) == sizeof(QC)); | ||
|  |         BOOST_ASSERT(sizeof(PS) == sizeof(QS)); | ||
|  |         rc = evaluate_rational(PC, QC, y2); | ||
|  |         rs = evaluate_rational(PS, QS, y2); | ||
|  |         factor = 1 / (sqrt(w) * constants::root_pi<T>()); | ||
|  |         // | ||
|  |         // What follows is really just: | ||
|  |         // | ||
|  |         // T z = w - 0.75f * pi<T>(); | ||
|  |         // value = factor * (rc * cos(z) - y * rs * sin(z)); | ||
|  |         // | ||
|  |         // but using the sin/cos addition rules plus constants | ||
|  |         // for the values of sin/cos of 3PI/4 which then cancel | ||
|  |         // out with corresponding terms in "factor". | ||
|  |         // | ||
|  |         T sx = sin(x); | ||
|  |         T cx = cos(x); | ||
|  |         value = factor * (rc * (sx - cx) + y * rs * (sx + cx)); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |         value *= -1;                 // odd function | ||
|  |     } | ||
|  |     return value; | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_J1_HPP | ||
|  | 
 |