135 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			135 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  (C) Copyright John Maddock 2006, 2015 | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_RELATIVE_ERROR | ||
|  | #define BOOST_MATH_RELATIVE_ERROR | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/fpclassify.hpp> | ||
|  | #include <boost/math/tools/promotion.hpp> | ||
|  | #include <boost/math/tools/precision.hpp> | ||
|  | 
 | ||
|  | namespace boost{ | ||
|  |    namespace math{ | ||
|  | 
 | ||
|  |       template <class T, class U> | ||
|  |       typename boost::math::tools::promote_args<T,U>::type relative_difference(const T& arg_a, const U& arg_b) | ||
|  |       { | ||
|  |          typedef typename boost::math::tools::promote_args<T, U>::type result_type; | ||
|  |          result_type a = arg_a; | ||
|  |          result_type b = arg_b; | ||
|  |          BOOST_MATH_STD_USING | ||
|  | #ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS | ||
|  |          // | ||
|  |          // If math.h has no long double support we can't rely | ||
|  |          // on the math functions generating exponents outside | ||
|  |          // the range of a double: | ||
|  |          // | ||
|  |          result_type min_val = (std::max)( | ||
|  |          tools::min_value<result_type>(), | ||
|  |          static_cast<result_type>((std::numeric_limits<double>::min)())); | ||
|  |          result_type max_val = (std::min)( | ||
|  |             tools::max_value<result_type>(), | ||
|  |             static_cast<result_type>((std::numeric_limits<double>::max)())); | ||
|  | #else | ||
|  |          result_type min_val = tools::min_value<result_type>(); | ||
|  |          result_type max_val = tools::max_value<result_type>(); | ||
|  | #endif | ||
|  |          // Screen out NaN's first, if either value is a NaN then the distance is "infinite": | ||
|  |          if((boost::math::isnan)(a) || (boost::math::isnan)(b)) | ||
|  |             return max_val; | ||
|  |          // Screen out infinites: | ||
|  |          if(fabs(b) > max_val) | ||
|  |          { | ||
|  |             if(fabs(a) > max_val) | ||
|  |                return (a < 0) == (b < 0) ? 0 : max_val;  // one infinity is as good as another! | ||
|  |             else | ||
|  |                return max_val;  // one infinity and one finite value implies infinite difference | ||
|  |          } | ||
|  |          else if(fabs(a) > max_val) | ||
|  |             return max_val;    // one infinity and one finite value implies infinite difference | ||
|  | 
 | ||
|  |          // | ||
|  |          // If the values have different signs, treat as infinite difference: | ||
|  |          // | ||
|  |          if(((a < 0) != (b < 0)) && (a != 0) && (b != 0)) | ||
|  |             return max_val; | ||
|  |          a = fabs(a); | ||
|  |          b = fabs(b); | ||
|  |          // | ||
|  |          // Now deal with zero's, if one value is zero (or denorm) then treat it the same as | ||
|  |          // min_val for the purposes of the calculation that follows: | ||
|  |          // | ||
|  |          if(a < min_val) | ||
|  |             a = min_val; | ||
|  |          if(b < min_val) | ||
|  |             b = min_val; | ||
|  | 
 | ||
|  |          return (std::max)(fabs((a - b) / a), fabs((a - b) / b)); | ||
|  |       } | ||
|  | 
 | ||
|  | #if defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__) | ||
|  |       template <> | ||
|  |       inline boost::math::tools::promote_args<double, double>::type relative_difference(const double& arg_a, const double& arg_b) | ||
|  |       { | ||
|  |          BOOST_MATH_STD_USING | ||
|  |          double a = arg_a; | ||
|  |          double b = arg_b; | ||
|  |          // | ||
|  |          // On Mac OS X we evaluate "double" functions at "long double" precision, | ||
|  |          // but "long double" actually has a very slightly narrower range than "double"!   | ||
|  |          // Therefore use the range of "long double" as our limits since results outside | ||
|  |          // that range may have been truncated to 0 or INF: | ||
|  |          // | ||
|  |          double min_val = (std::max)((double)tools::min_value<long double>(), tools::min_value<double>()); | ||
|  |          double max_val = (std::min)((double)tools::max_value<long double>(), tools::max_value<double>()); | ||
|  | 
 | ||
|  |          // Screen out NaN's first, if either value is a NaN then the distance is "infinite": | ||
|  |          if((boost::math::isnan)(a) || (boost::math::isnan)(b)) | ||
|  |             return max_val; | ||
|  |          // Screen out infinites: | ||
|  |          if(fabs(b) > max_val) | ||
|  |          { | ||
|  |             if(fabs(a) > max_val) | ||
|  |                return 0;  // one infinity is as good as another! | ||
|  |             else | ||
|  |                return max_val;  // one infinity and one finite value implies infinite difference | ||
|  |          } | ||
|  |          else if(fabs(a) > max_val) | ||
|  |             return max_val;    // one infinity and one finite value implies infinite difference | ||
|  | 
 | ||
|  |          // | ||
|  |          // If the values have different signs, treat as infinite difference: | ||
|  |          // | ||
|  |          if(((a < 0) != (b < 0)) && (a != 0) && (b != 0)) | ||
|  |             return max_val; | ||
|  |          a = fabs(a); | ||
|  |          b = fabs(b); | ||
|  |          // | ||
|  |          // Now deal with zero's, if one value is zero (or denorm) then treat it the same as | ||
|  |          // min_val for the purposes of the calculation that follows: | ||
|  |          // | ||
|  |          if(a < min_val) | ||
|  |             a = min_val; | ||
|  |          if(b < min_val) | ||
|  |             b = min_val; | ||
|  | 
 | ||
|  |          return (std::max)(fabs((a - b) / a), fabs((a - b) / b)); | ||
|  |       } | ||
|  | #endif | ||
|  | 
 | ||
|  |       template <class T, class U> | ||
|  |       inline typename boost::math::tools::promote_args<T, U>::type epsilon_difference(const T& arg_a, const U& arg_b) | ||
|  |       { | ||
|  |          typedef typename boost::math::tools::promote_args<T, U>::type result_type; | ||
|  |          result_type r = relative_difference(arg_a, arg_b); | ||
|  |          if(tools::max_value<result_type>() * boost::math::tools::epsilon<result_type>() < r) | ||
|  |             return tools::max_value<result_type>(); | ||
|  |          return r / boost::math::tools::epsilon<result_type>(); | ||
|  |       } | ||
|  | } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | #endif |