572 lines
16 KiB
Plaintext
572 lines
16 KiB
Plaintext
|
// Copyright John Maddock 2007.
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|
||
|
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
namespace boost{ namespace math{ namespace detail{
|
||
|
|
||
|
//
|
||
|
// Functor for root finding algorithm:
|
||
|
//
|
||
|
template <class Dist>
|
||
|
struct distribution_quantile_finder
|
||
|
{
|
||
|
typedef typename Dist::value_type value_type;
|
||
|
typedef typename Dist::policy_type policy_type;
|
||
|
|
||
|
distribution_quantile_finder(const Dist d, value_type p, bool c)
|
||
|
: dist(d), target(p), comp(c) {}
|
||
|
|
||
|
value_type operator()(value_type const& x)
|
||
|
{
|
||
|
return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
Dist dist;
|
||
|
value_type target;
|
||
|
bool comp;
|
||
|
};
|
||
|
//
|
||
|
// The purpose of adjust_bounds, is to toggle the last bit of the
|
||
|
// range so that both ends round to the same integer, if possible.
|
||
|
// If they do both round the same then we terminate the search
|
||
|
// for the root *very* quickly when finding an integer result.
|
||
|
// At the point that this function is called we know that "a" is
|
||
|
// below the root and "b" above it, so this change can not result
|
||
|
// in the root no longer being bracketed.
|
||
|
//
|
||
|
template <class Real, class Tol>
|
||
|
void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
|
||
|
|
||
|
template <class Real>
|
||
|
void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
b -= tools::epsilon<Real>() * b;
|
||
|
}
|
||
|
|
||
|
template <class Real>
|
||
|
void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
a += tools::epsilon<Real>() * a;
|
||
|
}
|
||
|
|
||
|
template <class Real>
|
||
|
void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
a += tools::epsilon<Real>() * a;
|
||
|
b -= tools::epsilon<Real>() * b;
|
||
|
}
|
||
|
//
|
||
|
// This is where all the work is done:
|
||
|
//
|
||
|
template <class Dist, class Tolerance>
|
||
|
typename Dist::value_type
|
||
|
do_inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
const typename Dist::value_type& p,
|
||
|
bool comp,
|
||
|
typename Dist::value_type guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
typename Dist::value_type adder,
|
||
|
const Tolerance& tol,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
typedef typename Dist::value_type value_type;
|
||
|
typedef typename Dist::policy_type policy_type;
|
||
|
|
||
|
static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
|
||
|
|
||
|
BOOST_MATH_STD_USING
|
||
|
|
||
|
distribution_quantile_finder<Dist> f(dist, p, comp);
|
||
|
//
|
||
|
// Max bounds of the distribution:
|
||
|
//
|
||
|
value_type min_bound, max_bound;
|
||
|
boost::math::tie(min_bound, max_bound) = support(dist);
|
||
|
|
||
|
if(guess > max_bound)
|
||
|
guess = max_bound;
|
||
|
if(guess < min_bound)
|
||
|
guess = min_bound;
|
||
|
|
||
|
value_type fa = f(guess);
|
||
|
boost::uintmax_t count = max_iter - 1;
|
||
|
value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
|
||
|
|
||
|
if(fa == 0)
|
||
|
return guess;
|
||
|
|
||
|
//
|
||
|
// For small expected results, just use a linear search:
|
||
|
//
|
||
|
if(guess < 10)
|
||
|
{
|
||
|
b = a;
|
||
|
while((a < 10) && (fa * fb >= 0))
|
||
|
{
|
||
|
if(fb <= 0)
|
||
|
{
|
||
|
a = b;
|
||
|
b = a + 1;
|
||
|
if(b > max_bound)
|
||
|
b = max_bound;
|
||
|
fb = f(b);
|
||
|
--count;
|
||
|
if(fb == 0)
|
||
|
return b;
|
||
|
if(a == b)
|
||
|
return b; // can't go any higher!
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b = a;
|
||
|
a = (std::max)(value_type(b - 1), value_type(0));
|
||
|
if(a < min_bound)
|
||
|
a = min_bound;
|
||
|
fa = f(a);
|
||
|
--count;
|
||
|
if(fa == 0)
|
||
|
return a;
|
||
|
if(a == b)
|
||
|
return a; // We can't go any lower than this!
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
//
|
||
|
// Try and bracket using a couple of additions first,
|
||
|
// we're assuming that "guess" is likely to be accurate
|
||
|
// to the nearest int or so:
|
||
|
//
|
||
|
else if(adder != 0)
|
||
|
{
|
||
|
//
|
||
|
// If we're looking for a large result, then bump "adder" up
|
||
|
// by a bit to increase our chances of bracketing the root:
|
||
|
//
|
||
|
//adder = (std::max)(adder, 0.001f * guess);
|
||
|
if(fa < 0)
|
||
|
{
|
||
|
b = a + adder;
|
||
|
if(b > max_bound)
|
||
|
b = max_bound;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b = (std::max)(value_type(a - adder), value_type(0));
|
||
|
if(b < min_bound)
|
||
|
b = min_bound;
|
||
|
}
|
||
|
fb = f(b);
|
||
|
--count;
|
||
|
if(fb == 0)
|
||
|
return b;
|
||
|
if(count && (fa * fb >= 0))
|
||
|
{
|
||
|
//
|
||
|
// We didn't bracket the root, try
|
||
|
// once more:
|
||
|
//
|
||
|
a = b;
|
||
|
fa = fb;
|
||
|
if(fa < 0)
|
||
|
{
|
||
|
b = a + adder;
|
||
|
if(b > max_bound)
|
||
|
b = max_bound;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b = (std::max)(value_type(a - adder), value_type(0));
|
||
|
if(b < min_bound)
|
||
|
b = min_bound;
|
||
|
}
|
||
|
fb = f(b);
|
||
|
--count;
|
||
|
}
|
||
|
if(a > b)
|
||
|
{
|
||
|
using std::swap;
|
||
|
swap(a, b);
|
||
|
swap(fa, fb);
|
||
|
}
|
||
|
}
|
||
|
//
|
||
|
// If the root hasn't been bracketed yet, try again
|
||
|
// using the multiplier this time:
|
||
|
//
|
||
|
if((boost::math::sign)(fb) == (boost::math::sign)(fa))
|
||
|
{
|
||
|
if(fa < 0)
|
||
|
{
|
||
|
//
|
||
|
// Zero is to the right of x2, so walk upwards
|
||
|
// until we find it:
|
||
|
//
|
||
|
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
|
||
|
{
|
||
|
if(count == 0)
|
||
|
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
|
||
|
a = b;
|
||
|
fa = fb;
|
||
|
b *= multiplier;
|
||
|
if(b > max_bound)
|
||
|
b = max_bound;
|
||
|
fb = f(b);
|
||
|
--count;
|
||
|
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//
|
||
|
// Zero is to the left of a, so walk downwards
|
||
|
// until we find it:
|
||
|
//
|
||
|
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
|
||
|
{
|
||
|
if(fabs(a) < tools::min_value<value_type>())
|
||
|
{
|
||
|
// Escape route just in case the answer is zero!
|
||
|
max_iter -= count;
|
||
|
max_iter += 1;
|
||
|
return 0;
|
||
|
}
|
||
|
if(count == 0)
|
||
|
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type());
|
||
|
b = a;
|
||
|
fb = fa;
|
||
|
a /= multiplier;
|
||
|
if(a < min_bound)
|
||
|
a = min_bound;
|
||
|
fa = f(a);
|
||
|
--count;
|
||
|
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
max_iter -= count;
|
||
|
if(fa == 0)
|
||
|
return a;
|
||
|
if(fb == 0)
|
||
|
return b;
|
||
|
if(a == b)
|
||
|
return b; // Ran out of bounds trying to bracket - there is no answer!
|
||
|
//
|
||
|
// Adjust bounds so that if we're looking for an integer
|
||
|
// result, then both ends round the same way:
|
||
|
//
|
||
|
adjust_bounds(a, b, tol);
|
||
|
//
|
||
|
// We don't want zero or denorm lower bounds:
|
||
|
//
|
||
|
if(a < tools::min_value<value_type>())
|
||
|
a = tools::min_value<value_type>();
|
||
|
//
|
||
|
// Go ahead and find the root:
|
||
|
//
|
||
|
std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
|
||
|
max_iter += count;
|
||
|
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
|
||
|
return (r.first + r.second) / 2;
|
||
|
}
|
||
|
//
|
||
|
// Some special routine for rounding up and down:
|
||
|
// We want to check and see if we are very close to an integer, and if so test to see if
|
||
|
// that integer is an exact root of the cdf. We do this because our root finder only
|
||
|
// guarantees to find *a root*, and there can sometimes be many consecutive floating
|
||
|
// point values which are all roots. This is especially true if the target probability
|
||
|
// is very close 1.
|
||
|
//
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type cc = ceil(result);
|
||
|
typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
|
||
|
if(pp == p)
|
||
|
result = cc;
|
||
|
else
|
||
|
result = floor(result);
|
||
|
//
|
||
|
// Now find the smallest integer <= result for which we get an exact root:
|
||
|
//
|
||
|
while(result != 0)
|
||
|
{
|
||
|
cc = result - 1;
|
||
|
if(cc < support(d).first)
|
||
|
break;
|
||
|
pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
|
||
|
if(pp == p)
|
||
|
result = cc;
|
||
|
else if(c ? pp > p : pp < p)
|
||
|
break;
|
||
|
result -= 1;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#ifdef BOOST_MSVC
|
||
|
#pragma warning(push)
|
||
|
#pragma warning(disable:4127)
|
||
|
#endif
|
||
|
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type cc = floor(result);
|
||
|
typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
|
||
|
if(pp == p)
|
||
|
result = cc;
|
||
|
else
|
||
|
result = ceil(result);
|
||
|
//
|
||
|
// Now find the largest integer >= result for which we get an exact root:
|
||
|
//
|
||
|
while(true)
|
||
|
{
|
||
|
cc = result + 1;
|
||
|
if(cc > support(d).second)
|
||
|
break;
|
||
|
pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
|
||
|
if(pp == p)
|
||
|
result = cc;
|
||
|
else if(c ? pp < p : pp > p)
|
||
|
break;
|
||
|
result += 1;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#ifdef BOOST_MSVC
|
||
|
#pragma warning(pop)
|
||
|
#endif
|
||
|
//
|
||
|
// Now finally are the public API functions.
|
||
|
// There is one overload for each policy,
|
||
|
// each one is responsible for selecting the correct
|
||
|
// termination condition, and rounding the result
|
||
|
// to an int where required.
|
||
|
//
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type
|
||
|
inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
typename Dist::value_type p,
|
||
|
bool c,
|
||
|
const typename Dist::value_type& guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
const typename Dist::value_type& adder,
|
||
|
const policies::discrete_quantile<policies::real>&,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
if(p > 0.5)
|
||
|
{
|
||
|
p = 1 - p;
|
||
|
c = !c;
|
||
|
}
|
||
|
typename Dist::value_type pp = c ? 1 - p : p;
|
||
|
if(pp <= pdf(dist, 0))
|
||
|
return 0;
|
||
|
return do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
guess,
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
|
||
|
max_iter);
|
||
|
}
|
||
|
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type
|
||
|
inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
const typename Dist::value_type& p,
|
||
|
bool c,
|
||
|
const typename Dist::value_type& guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
const typename Dist::value_type& adder,
|
||
|
const policies::discrete_quantile<policies::integer_round_outwards>&,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
typedef typename Dist::value_type value_type;
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type pp = c ? 1 - p : p;
|
||
|
if(pp <= pdf(dist, 0))
|
||
|
return 0;
|
||
|
//
|
||
|
// What happens next depends on whether we're looking for an
|
||
|
// upper or lower quantile:
|
||
|
//
|
||
|
if(pp < 0.5f)
|
||
|
return round_to_floor(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
(guess < 1 ? value_type(1) : (value_type)floor(guess)),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_floor(),
|
||
|
max_iter), p, c);
|
||
|
// else:
|
||
|
return round_to_ceil(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
(value_type)ceil(guess),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_ceil(),
|
||
|
max_iter), p, c);
|
||
|
}
|
||
|
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type
|
||
|
inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
const typename Dist::value_type& p,
|
||
|
bool c,
|
||
|
const typename Dist::value_type& guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
const typename Dist::value_type& adder,
|
||
|
const policies::discrete_quantile<policies::integer_round_inwards>&,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
typedef typename Dist::value_type value_type;
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type pp = c ? 1 - p : p;
|
||
|
if(pp <= pdf(dist, 0))
|
||
|
return 0;
|
||
|
//
|
||
|
// What happens next depends on whether we're looking for an
|
||
|
// upper or lower quantile:
|
||
|
//
|
||
|
if(pp < 0.5f)
|
||
|
return round_to_ceil(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
ceil(guess),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_ceil(),
|
||
|
max_iter), p, c);
|
||
|
// else:
|
||
|
return round_to_floor(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
(guess < 1 ? value_type(1) : floor(guess)),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_floor(),
|
||
|
max_iter), p, c);
|
||
|
}
|
||
|
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type
|
||
|
inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
const typename Dist::value_type& p,
|
||
|
bool c,
|
||
|
const typename Dist::value_type& guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
const typename Dist::value_type& adder,
|
||
|
const policies::discrete_quantile<policies::integer_round_down>&,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
typedef typename Dist::value_type value_type;
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type pp = c ? 1 - p : p;
|
||
|
if(pp <= pdf(dist, 0))
|
||
|
return 0;
|
||
|
return round_to_floor(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
(guess < 1 ? value_type(1) : floor(guess)),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_floor(),
|
||
|
max_iter), p, c);
|
||
|
}
|
||
|
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type
|
||
|
inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
const typename Dist::value_type& p,
|
||
|
bool c,
|
||
|
const typename Dist::value_type& guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
const typename Dist::value_type& adder,
|
||
|
const policies::discrete_quantile<policies::integer_round_up>&,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type pp = c ? 1 - p : p;
|
||
|
if(pp <= pdf(dist, 0))
|
||
|
return 0;
|
||
|
return round_to_ceil(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
ceil(guess),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_ceil(),
|
||
|
max_iter), p, c);
|
||
|
}
|
||
|
|
||
|
template <class Dist>
|
||
|
inline typename Dist::value_type
|
||
|
inverse_discrete_quantile(
|
||
|
const Dist& dist,
|
||
|
const typename Dist::value_type& p,
|
||
|
bool c,
|
||
|
const typename Dist::value_type& guess,
|
||
|
const typename Dist::value_type& multiplier,
|
||
|
const typename Dist::value_type& adder,
|
||
|
const policies::discrete_quantile<policies::integer_round_nearest>&,
|
||
|
boost::uintmax_t& max_iter)
|
||
|
{
|
||
|
typedef typename Dist::value_type value_type;
|
||
|
BOOST_MATH_STD_USING
|
||
|
typename Dist::value_type pp = c ? 1 - p : p;
|
||
|
if(pp <= pdf(dist, 0))
|
||
|
return 0;
|
||
|
//
|
||
|
// Note that we adjust the guess to the nearest half-integer:
|
||
|
// this increase the chances that we will bracket the root
|
||
|
// with two results that both round to the same integer quickly.
|
||
|
//
|
||
|
return round_to_floor(dist, do_inverse_discrete_quantile(
|
||
|
dist,
|
||
|
p,
|
||
|
c,
|
||
|
(guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f),
|
||
|
multiplier,
|
||
|
adder,
|
||
|
tools::equal_nearest_integer(),
|
||
|
max_iter) + 0.5f, p, c);
|
||
|
}
|
||
|
|
||
|
}}} // namespaces
|
||
|
|
||
|
#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|
||
|
|