js8call/.svn/pristine/8c/8c1b1082628fc09f0b2ab4dd20d644baa25b55d1.svn-base

447 lines
16 KiB
Plaintext
Raw Normal View History

2018-02-08 21:28:33 -05:00
/* The following code declares class array,
* an STL container (as wrapper) for arrays of constant size.
*
* See
* http://www.boost.org/libs/array/
* for documentation.
*
* The original author site is at: http://www.josuttis.com/
*
* (C) Copyright Nicolai M. Josuttis 2001.
*
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* 14 Apr 2012 - (mtc) Added support for boost::hash
* 28 Dec 2010 - (mtc) Added cbegin and cend (and crbegin and crend) for C++Ox compatibility.
* 10 Mar 2010 - (mtc) fill method added, matching resolution of the standard library working group.
* See <http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#776> or Trac issue #3168
* Eventually, we should remove "assign" which is now a synonym for "fill" (Marshall Clow)
* 10 Mar 2010 - added workaround for SUNCC and !STLPort [trac #3893] (Marshall Clow)
* 29 Jan 2004 - c_array() added, BOOST_NO_PRIVATE_IN_AGGREGATE removed (Nico Josuttis)
* 23 Aug 2002 - fix for Non-MSVC compilers combined with MSVC libraries.
* 05 Aug 2001 - minor update (Nico Josuttis)
* 20 Jan 2001 - STLport fix (Beman Dawes)
* 29 Sep 2000 - Initial Revision (Nico Josuttis)
*
* Jan 29, 2004
*/
#ifndef BOOST_ARRAY_HPP
#define BOOST_ARRAY_HPP
#include <boost/detail/workaround.hpp>
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# pragma warning(push)
# pragma warning(disable:4996) // 'std::equal': Function call with parameters that may be unsafe
# pragma warning(disable:4510) // boost::array<T,N>' : default constructor could not be generated
# pragma warning(disable:4610) // warning C4610: class 'boost::array<T,N>' can never be instantiated - user defined constructor required
#endif
#include <cstddef>
#include <stdexcept>
#include <boost/assert.hpp>
#include <boost/swap.hpp>
// Handles broken standard libraries better than <iterator>
#include <boost/detail/iterator.hpp>
#include <boost/throw_exception.hpp>
#include <boost/functional/hash_fwd.hpp>
#include <algorithm>
// FIXES for broken compilers
#include <boost/config.hpp>
namespace boost {
template<class T, std::size_t N>
class array {
public:
T elems[N]; // fixed-size array of elements of type T
public:
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
iterator begin() { return elems; }
const_iterator begin() const { return elems; }
const_iterator cbegin() const { return elems; }
iterator end() { return elems+N; }
const_iterator end() const { return elems+N; }
const_iterator cend() const { return elems+N; }
// reverse iterator support
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
// workaround for broken reverse_iterator in VC7
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
reference, iterator, reference> > reverse_iterator;
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
const_reference, iterator, reference> > const_reverse_iterator;
#elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC)
typedef std::reverse_iterator<iterator, std::random_access_iterator_tag,
value_type, reference, iterator, difference_type> reverse_iterator;
typedef std::reverse_iterator<const_iterator, std::random_access_iterator_tag,
value_type, const_reference, const_iterator, difference_type> const_reverse_iterator;
#else
// workaround for broken reverse_iterator implementations
typedef std::reverse_iterator<iterator,T> reverse_iterator;
typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
#endif
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator crbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_reverse_iterator crend() const {
return const_reverse_iterator(begin());
}
// operator[]
reference operator[](size_type i)
{
BOOST_ASSERT_MSG( i < N, "out of range" );
return elems[i];
}
const_reference operator[](size_type i) const
{
BOOST_ASSERT_MSG( i < N, "out of range" );
return elems[i];
}
// at() with range check
reference at(size_type i) { rangecheck(i); return elems[i]; }
const_reference at(size_type i) const { rangecheck(i); return elems[i]; }
// front() and back()
reference front()
{
return elems[0];
}
const_reference front() const
{
return elems[0];
}
reference back()
{
return elems[N-1];
}
const_reference back() const
{
return elems[N-1];
}
// size is constant
static size_type size() { return N; }
static bool empty() { return false; }
static size_type max_size() { return N; }
enum { static_size = N };
// swap (note: linear complexity)
void swap (array<T,N>& y) {
for (size_type i = 0; i < N; ++i)
boost::swap(elems[i],y.elems[i]);
}
// direct access to data (read-only)
const T* data() const { return elems; }
T* data() { return elems; }
// use array as C array (direct read/write access to data)
T* c_array() { return elems; }
// assignment with type conversion
template <typename T2>
array<T,N>& operator= (const array<T2,N>& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
// assign one value to all elements
void assign (const T& value) { fill ( value ); } // A synonym for fill
void fill (const T& value)
{
std::fill_n(begin(),size(),value);
}
// check range (may be private because it is static)
static void rangecheck (size_type i) {
if (i >= size()) {
std::out_of_range e("array<>: index out of range");
boost::throw_exception(e);
}
}
};
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template< class T >
class array< T, 0 > {
public:
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
iterator begin() { return iterator( reinterpret_cast< T * >( this ) ); }
const_iterator begin() const { return const_iterator( reinterpret_cast< const T * >( this ) ); }
const_iterator cbegin() const { return const_iterator( reinterpret_cast< const T * >( this ) ); }
iterator end() { return begin(); }
const_iterator end() const { return begin(); }
const_iterator cend() const { return cbegin(); }
// reverse iterator support
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
// workaround for broken reverse_iterator in VC7
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
reference, iterator, reference> > reverse_iterator;
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
const_reference, iterator, reference> > const_reverse_iterator;
#elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC)
typedef std::reverse_iterator<iterator, std::random_access_iterator_tag,
value_type, reference, iterator, difference_type> reverse_iterator;
typedef std::reverse_iterator<const_iterator, std::random_access_iterator_tag,
value_type, const_reference, const_iterator, difference_type> const_reverse_iterator;
#else
// workaround for broken reverse_iterator implementations
typedef std::reverse_iterator<iterator,T> reverse_iterator;
typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
#endif
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator crbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_reverse_iterator crend() const {
return const_reverse_iterator(begin());
}
// operator[]
reference operator[](size_type /*i*/)
{
return failed_rangecheck();
}
const_reference operator[](size_type /*i*/) const
{
return failed_rangecheck();
}
// at() with range check
reference at(size_type /*i*/) { return failed_rangecheck(); }
const_reference at(size_type /*i*/) const { return failed_rangecheck(); }
// front() and back()
reference front()
{
return failed_rangecheck();
}
const_reference front() const
{
return failed_rangecheck();
}
reference back()
{
return failed_rangecheck();
}
const_reference back() const
{
return failed_rangecheck();
}
// size is constant
static size_type size() { return 0; }
static bool empty() { return true; }
static size_type max_size() { return 0; }
enum { static_size = 0 };
void swap (array<T,0>& /*y*/) {
}
// direct access to data (read-only)
const T* data() const { return 0; }
T* data() { return 0; }
// use array as C array (direct read/write access to data)
T* c_array() { return 0; }
// assignment with type conversion
template <typename T2>
array<T,0>& operator= (const array<T2,0>& ) {
return *this;
}
// assign one value to all elements
void assign (const T& value) { fill ( value ); }
void fill (const T& ) {}
// check range (may be private because it is static)
static reference failed_rangecheck () {
std::out_of_range e("attempt to access element of an empty array");
boost::throw_exception(e);
#if defined(BOOST_NO_EXCEPTIONS) || (!defined(BOOST_MSVC) && !defined(__PATHSCALE__))
//
// We need to return something here to keep
// some compilers happy: however we will never
// actually get here....
//
static T placeholder;
return placeholder;
#endif
}
};
#endif
// comparisons
template<class T, std::size_t N>
bool operator== (const array<T,N>& x, const array<T,N>& y) {
return std::equal(x.begin(), x.end(), y.begin());
}
template<class T, std::size_t N>
bool operator< (const array<T,N>& x, const array<T,N>& y) {
return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
}
template<class T, std::size_t N>
bool operator!= (const array<T,N>& x, const array<T,N>& y) {
return !(x==y);
}
template<class T, std::size_t N>
bool operator> (const array<T,N>& x, const array<T,N>& y) {
return y<x;
}
template<class T, std::size_t N>
bool operator<= (const array<T,N>& x, const array<T,N>& y) {
return !(y<x);
}
template<class T, std::size_t N>
bool operator>= (const array<T,N>& x, const array<T,N>& y) {
return !(x<y);
}
// global swap()
template<class T, std::size_t N>
inline void swap (array<T,N>& x, array<T,N>& y) {
x.swap(y);
}
#if defined(__SUNPRO_CC)
// Trac ticket #4757; the Sun Solaris compiler can't handle
// syntax like 'T(&get_c_array(boost::array<T,N>& arg))[N]'
//
// We can't just use this for all compilers, because the
// borland compilers can't handle this form.
namespace detail {
template <typename T, std::size_t N> struct c_array
{
typedef T type[N];
};
}
// Specific for boost::array: simply returns its elems data member.
template <typename T, std::size_t N>
typename detail::c_array<T,N>::type& get_c_array(boost::array<T,N>& arg)
{
return arg.elems;
}
// Specific for boost::array: simply returns its elems data member.
template <typename T, std::size_t N>
typename const detail::c_array<T,N>::type& get_c_array(const boost::array<T,N>& arg)
{
return arg.elems;
}
#else
// Specific for boost::array: simply returns its elems data member.
template <typename T, std::size_t N>
T(&get_c_array(boost::array<T,N>& arg))[N]
{
return arg.elems;
}
// Const version.
template <typename T, std::size_t N>
const T(&get_c_array(const boost::array<T,N>& arg))[N]
{
return arg.elems;
}
#endif
#if 0
// Overload for std::array, assuming that std::array will have
// explicit conversion functions as discussed at the WG21 meeting
// in Summit, March 2009.
template <typename T, std::size_t N>
T(&get_c_array(std::array<T,N>& arg))[N]
{
return static_cast<T(&)[N]>(arg);
}
// Const version.
template <typename T, std::size_t N>
const T(&get_c_array(const std::array<T,N>& arg))[N]
{
return static_cast<T(&)[N]>(arg);
}
#endif
template<class T, std::size_t N>
std::size_t hash_value(const array<T,N>& arr)
{
return boost::hash_range(arr.begin(), arr.end());
}
} /* namespace boost */
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# pragma warning(pop)
#endif
#endif /*BOOST_ARRAY_HPP*/